UA-SIS-9.4.4-302

Effective Date: December 21, 2023

Revision – 7.0 RELEASED

Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) Project

OSIRIS-REx Laser Altimeter (OLA) Uncalibrated / Calibrated Data Product Software Interface Specification

UA-SIS-9.4.4-302, Rev. 7.0

Revision -7.0

December 21, 2023

CM FOREWORD

This document is an OSIRIS-REx Project controlled document. Changes to this document require prior approval of the OSIRIS-REx Configuration Control Board (CCB) and Configuration Management Lead (CML). Proposed changes shall be submitted to the OSIRIS-REx Project CML, along with supportive material justifying the proposed change.

Questions or comments concerning this document should be addressed to:

SPOC Configuration Management Team 1415 N. 6th Avenue Tucson, AZ 85705

Email: spoc-cm@orex.lpl.arizona.edu

OSIRIS-REx Project OLA Uncalibrated/Calibrated Data Product SIS

SIGNATURE PAGE

Prepared By:
on file
Mike Daly, York University
Date
OLA Primary Investigator
on file
Olivier Barnouin, JHU/APL
Date
OLA Instrument Scientist
on file
M Vothoning Crambia Indian Information Convince II C
M. Katherine Crombie, Indigo Information Services, LLC Date
2
OSIRIS-REx PDS Lead
Approved By:
on file
Karl Harshman
Date
SPOC Manager

UA-SIS-9.4.4-302, Rev. 7.0 **RELEASED**

on file

Mike Fitzgibbon Date

SPOC Cal/Val Software Lead

on file

Nathan Mogk Date

SPOC Systems Engineer

DOCUMENT CHANGE LOG

REV/VERSIO N LEVEL	DESCRIPTION OF CHANGE	APPROVE D BY	DATE APPROVED
1.0	Initial Release		09/25/2014
1.1	Updated formats for consistency with pipeline software version 1.3_F	ECR-0023	01/09/2015
1.2	Updated file formats based on feedback from PDS Peer Review.	ECR-0023	01/08/2016
1.2	Updated Signature Page	ECR-0023	02/01/2016
1.2	Updated Applicable Documents	ECR-0023	02/01/2016
2.0	Release	ECR-0023	05/11/2016
3.0	Update per ECR	ECR-0072	04/19/2017
4.0	Update per Change Request	CR-124	08/21/2017
5.0	Updates per PDS Peer Review		01/01/2020
6.0	Updates per Change Request	CR-467	06/11/2020
7.0	Updated per L2a lien resolution		12/21/2023

LIST OF TBDs/TDRs

SECTION ID	DESCRIPTION OF TBD/TBR	DATE OF RESOLUTIO
		N
2	OLA Instrument Paper	11/1/2019
2	OSIRIS-REx Archive Volume SIS	11/1/2019
Table 4	Update Data Volume on revision of Design Reference Mission	11/1/2019
4.4.3	OSIRIS-REx Coordinate System Plan	11/1/2019

TABLE OF CONTENTS

1	Pu	rpose and Scope	8
2	Ap	pplicable Documents and Constraints	8
3	Re	elationships with Other Interfaces	8
4	Da	ita Product Characteristics and Environment	9
	4.1	Instrument Overview	9
	4.2	Data Product Overview	
	4.3	Data Processing	
	4.3		
		3.2 Data Product Generation	
		4.3.2.1 Level-0 Raw Data	
		4.3.2.2 Level-1 Calibrated Science and SoH	
		4.3.2.3 Level-2 Calibrated Data	
		4.3.2.4 Level-2A Strip-adjusted Calibrated Data	
	4.3	70 Buu 10 V	
	4.3		
	4.4		
	4.4		
	4.4		
	4.4		
	4.4	A.4 Data Storage Conventions	
5		etailed Data Product Specifications	22
	5.1		
	5.2	Data Format Descriptions	
	5.2		
	5.2		
	5.2		
	5.2		
	5.2		
	5.2		
	5.3	Label and Header Descriptions	61
		plicable Software	61
	6.1	<i>y</i> 6	
	6.2	Applicable PDS Software Tools	
	6.3	Software Distribution and Update Procedures	61
7	Аp	pendices	62
	7.1	Acronyms	62
	7.2	Definitions of Data Processing Levels	
	7.3	Example PDS Label	
	7.4	Reference	
	7.5	OLA PDS Calibration File Parse	65

1 Purpose and Scope

The data products described by this Software Interface Specification (SIS) are the OSIRIS-REx Laser Altimeter (OLA) uncalibrated and calibrated data products. The OSIRIS-REx Science Processing and Operation Center located at the University of Arizona produces these data products and distributes them to both the OSIRIS-REx Science Team and the Planetary Data System.

The purpose of this document is to provide users of the data products with a detailed description of the product and a description of how it was generated, including data sources and destinations. The document is intended to provide enough information to enable users to read and understand the data products. The users for whom this document is intended are the scientists who will analyze the data, including those associated with the project and those in the general planetary science community.

2 Applicable Documents and Constraints

This Data Product SIS is consistent with the following Planetary Data System Documents:

- 1. Planetary Data System Standards Reference, Version 1.7.0, September 15, 2016.
- 2. PDS4 Data Dictionary Abridged Version 1.7.0.0, September 30, 2016.
- 3. PDS4 Information Model Specification, V.1.7.0.0, September 29, 2016.

This Data Product SIS is responsive to the following OSIRIS-REx documents:

- 4. OSIRIS-REx Science Data Management Plan, UA-PLN-9.4.4-004, Rev 4.0, May 26, 2016.
 - 5. OSIRIS-REx Science Processing and Operations Center and Planetary Data System Small Bodies Node Interface Control Document, UA-ICD-9.4.4-101, 1.0 October 2013.
- 6. OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument, Space Science Reviews, 2017
 - 7. SPOC OLA Interface Control Document, UA-9.4.4-1003.

Finally, this SIS is meant to be consistent with the contract negotiated between the OSIRIS-REx Project and the Science Processing and Operations Center.

3 Relationships with Other Interfaces

Changes to the data products described in this SIS effect the following software, products, or documents:

Table 1. Interface Relationships

Name	Туре	Owner
SPOC Database Schema	Product	SPOC
OLA Science Raw	Product	SPOC
OLA State of Health Raw	Product	SPOC
OLA Science Uncalibrated	Product	SPOC
OLA State of Health Uncalibrated Converted	Product	SPOC
OLA Science Calibrated	Product	SPOC
OLA Pipeline Software	Software	SPOC
SPOC Archive Packager	Software	SPOC
OSIRIS-REx Science Data Management Plan	Document	Project

4 Data Product Characteristics and Environment

4.1 Instrument Overview

The OSIRIS-REx Laser Altimeter (**OLA**) is a two-axis scanning lidar (Light Detection and Ranging) instrument that will provide high-resolution topographical information throughout the entire mission.

OLA has a single common receiver and two complementary transmitter assemblies, which enhance the resolution of its data. OLA's high-energy laser transmitter (HELT) is used for ranging and mapping from 1 to 7.5 km and collects returns at 100Hz. The low-energy laser transmitter (LELT) collects returns at 10kHz and is used for ranging and imaging at smaller distances (~200 m to 1 km). The repetition rate of these transmitters sets the data acquisition rate of OLA. Laser pulses from both the low and high energy transmitters are directed onto a movable scanning mirror, which is co-aligned with the field of view of the receiver telescope limiting the effects of background solar radiation. Each pulse provides target range, azimuth, elevation, received intensity and a time-tag.

OLA has 4 operational modes. These are:

- (1) Initialization Optical head is off, communications and data transfer enabled.
- (2) Standby- Transmitter temperatures are controlled to operational temperatures, communications and data transfer enabled.
- (3) High Energy For mission phases when the range is ≥ 1 km, OLA uses the highenergy transmitter, data collection is enabled; and

(4) Low Energy - For mission phases when the range is <1 km, OLA uses the low-energy transmitter, data collection is enabled.

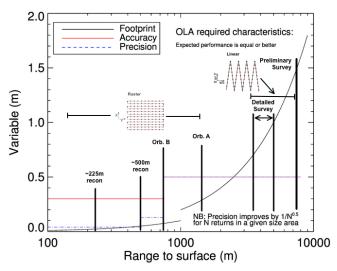


Figure 1. OLA's scan pattern and required precision and accuracy

OLA is capable of scanning in two main patterns: (1) A one mirror axis side to side scan (linear), when combined with the motion of the spacecraft results in a raster scan, and (2) A full twodimensional (raster) scan (Figure 1). These two patterns are applicable and adequate for all mission phases. OLA exceeds the mission requirements in all phases. In addition to its enhanced precision, after Orbital Phase B, OLA exceeds the coverage and data quality of all previous missions, surpassing the Hayabusa mission coverage

of Itokawa by a factor of 20, and the NEAR laser rangefinder results at 433 Eros by a factor of 2 after correcting for the significant difference in size between Eros and Bennu. The OLA data will therefore provide fundamental and unprecedented asteroid science on asteroid shape and topography, providing invaluable insights on the surface processes controlling the evolution of Bennu, and on the source materials of the sample collected by the OSIRIS-REx spacecraft. OLA will also enhance performance of the other remote sensing instruments (images and spectra) by setting precise range, scale, and surface slope information.

OLA data exists for a variety of mission phases. The range of Scan IDs delineates the data by mission phase. These are shown in Table 2.

Table 2. OLA Observations

Mission Phase	Observation Scan ID Ranges
Outbound Cruise and Approach	0-999
Preliminary Survey	1000-1999
Detailed Survey	2000-2999
Orbit A	3000-3999
Orbital B	4000-4999
Orbital C	5000-5999
Reconnaissance	6000-6999
Farewell	7000-7999

4.2 Data Product Overview

This SIS describes science and state of health (housekeeping) data acquired by OLA. Data are acquired on a schedule set by the mission Design Reference Mission (DRM). Science data are acquired at variable rates depending on the transmitter utilized. When the HELT is used, OLA collects ~225 bytes per s. When the LELT is used, OLA collects data at ~22.5 kbytes per s. The science data are to be sorted by transaction ID (scan identifier field in the OLA telemetry data that associates the data to a specific OLA collection event), and day when this transaction was initiated. State of Health (SoH) records are acquired at a rate of 10 Hz and are stored as a single binary table file sorted by Power Cycle counter. The Power Cycle counter is incremented by one whenever the instrument is turned on. All SOH records generated by the instrument contain the same Power Cycle counter while the instrument is on. Thus, a single SOH file contains data from a single power on/power off instrument cycle. The Power Cycle counter is also stored in the OLA Science data records, making it easy to correlate a given SOH file with OLA science data.

The specific data products described by this SIS are:

- 1. **OLA Raw (L0) Science Data** These data are reconstructed from instrument telemetry and include time of observation, time of flight, intensity, and instrument positional data in digital numbers (DN).
- 2. **OLA Raw (L0) State of Health Data** These data are reconstructed from instrument telemetry and include instrument rates, status, and temperatures in DN.
- 3. **OLA Calibrated (L1) Science Data** Similar in format to the OLA Raw (L0) Science Data, but with engineering conversions applied resulting in data in physical units.
- 4. **OLA Calibrated (L1) State of Health Data** Similar in format to the OLA Raw (L0) State of Health Data, but with engineering conversions applied resulting in data in physical units.
- 5. **OLA Calibrated Data (L2)** These data are a table of time, range, scan type flag, and Bennu surface position of the observation.
- 6. **OLA Strip Adjusted Calibrated Data (L2A)** These are L2 data whose Bennu surface and spacecraft position values have been adjusted to minimize differences between individual OLA scans. See section 4.3.2.4 for further details.

4.3 Data Processing

This section should provide general information about the data product content, format, size, and production rate. Details about data format should be specified later in section 6.

4.3.1 Data Processing Level

Describe the product in terms of its NASA and/or CODMAC processing levels.

Table 3. OLA Data Products

OLA Product	Data Collectio n Name	OSIRIS- REx Processin g Level	Description
N/A	N/A	N/A	OLA Science Telemetry
OLA Raw Science	data_raw	L0	OLA science observations packaged by scan sequence ID and UTC Day of year corresponding to the timestamp of the first scan in the scan sequence.
OLA Raw SoH	data_hkl0	L0	OLA state of health observations packaged by Power Cycle.
OLA Reduced Science	data_redu ced data_redu ced_v2	L1	OLA reduced science observations packaged by scan sequence ID and UTC Day of year corresponding to the timestamp of the first scan in the scan sequence, converted to physical units.
OLA Reduced SoH	data_hkl1	L1	OLA reduced (converted to physical units) state of health observations packaged by Power Cycle.
OLA Cal Science	data_calib rated data_calib rated_v2	L2	These data are a table of time, range, scan type flag, and Bennu surface position of the observation packaged by scan sequence ID and UTC Day of year corresponding to the timestamp of the first scan in the scan sequence.
OLA Cal Science Level 2A	data_calib rated_2a	L2A	These are L2 data whose Bennu surface and spacecraft positions have been adjusted to minimize differences between individual OLA scans. These are derived data products to be delivered at the end of the asteroid encounter.

4.3.2 Data Product Generation

As mentioned previously, all OSIRIS-REx science data processing is completed at the SPOC located at the University of Arizona. The decision was made early in the mission life cycle, that all processing would be centralized to facilitate the relatively quick turnaround needed by the science and operations teams to make tactical decisions about sample site selection.

4.3.2.1 Level-0 Raw Data

The processing of OLA is conceptually simple (Figure 2). Prior to ingest, OLA telemetry data will be cleaned by the SPOC. Cleaning includes removal of spacecraft headers and duplicate data and correction of any DSN transmission errors. OLA Data will enter ingest un-corrupted. OLA did not generate any low priority data.

OLA ingest algorithms take OLA raw telemetry and compute the OLA level 1 data product in several steps. The first step is to split OLA telemetry into science data and state of health (SoH) data. These data products are known as the OLA Level 0 science data product and the OLA level 0 SoH. Their units are digital numbers and/or voltages (i.e., not physical or engineering units).

OLA Telemetry Ingest by/at SPOC -Remove duplicates and strip any spacecraft Sort by APID headers ENG Low High DATA Priority Priority APL code run Sort and concatenate Sort and concatenate at SPOC OLA State OLA Dump OLA Post **OLA Science** of Health Level 0 Level 0 Level 0 Level 0 OLA SOH Level 0 OLA Level 0 to to Level 1 Calibrate OLA Level 1 OLA CK generation OLA CK Kernel OLA Level 1 to SPICE Data Level 2 OLA Level 2 * Low priority data is NOT expected to be used in current plan but available in case of problem

OLA Processing

Figure 2. OLA Processing Pipeline

OLA Science Level 0 data product (OLA L0) contains the most basic OLA measurement data in a binary table format separated by collection day and transaction ID (scan identifier field in the OLA telemetry data that associates the data to a specific OLA collection event). OLA L0 data has no corrections applied. Here data is stored in non-physical units (i.e., voltages and digital numbers) and no calibration is required. Data are reformatted to match acceptable PDS data types and data type lengths. One data record is available for each OLA shot fired. OLA SoH Level 0 data will be in binary table format separated by Power Cycle. Here data is also stored in uncalibrated, non-physical units.

4.3.2.2 Level-1 Calibrated Science and SoH

OLA level 0 data products are converted to level 1 data products (science and SoH), which have the same information in physical or engineering units. This conversion requires a calibration table. The calibration table consists of both a set of lookup tables and a series of coefficients for polynomials, which relate the non-physical units of Level 0 data to physical units used in these OLA Level 1 data products. MacDonald, Dettwiler and Associates (MDA), the manufactures of the OLA instrument, and the OLA science team, provide the coefficients and lookup table values. These values were updated in flight: The calibration table filenames have a version number and date range for which the calibration table applies. The values that get corrected in the science data include the range, intensity in and out, and the mirrors azimuth and elevation. There is also an update to the OLA status flag, to highlight when the OLA demodulator is on (starts with 100). This demodulator impacts the intensity measurement collected by OLA, and to a much lesser extent the range accuracy.

Updates to the calibration tables and to the calibration algorithm which take into account the OLA demodulator state led to the complete reprocessing of the Level-1 science data. The reprocessed data is contained in the data reduced v2 collection (Table 3).

The Mission Event Time (MET), and corresponding MET offset for each lidar shot is also correctly computed using the inputs from the level 0 data. The MET is equivalent to the spacecraft clock time (sometime also called Spacecraft Clock time or SCLK) used with other data on the OSIRIS-REx mission. The use of MET is preferred by the OLA and Altimetry working group to avoid any confusion with the NAIF SPICE spacecraft clock kernel (also called a SCLK kernel or file), which is used to compute a corresponding UTC in the OLA Level 1 data products. See Section 4.4.2 Time Standards for additional information on time calculations.

The list of variables that are corrected via polynomials in the SoH Level 0 are much more extensive and include all the relevant temperatures, the minimum and average range measured over 500 shots, and all the voltages. Times are also adjusted correctly in the SoH, using a MET, and MET offset. A corresponding UTC is also computed, by making use of a SPICE spacecraft clock kernel.

OLA Science Level 1 data product (OLA L1) contains the most basic OLA measurement data in a binary table format separated by collection day and transaction ID (scan identifier field in the OLA telemetry data that associates the data to a specific OLA collection event). OLA L1 data are stored in calibrated physical units (i.e., ranges in millimeters and scan angles in milliradians as opposed to voltages and digital numbers). One data record is available for each OLA shot fired. Not all OLA L0 fields are necessary for data analysis. As a result, OLA L1 data has these fields removed. OLA L1 science data has a time correction applied to the scan_ola_time, with the sclk offset applied to the scan_ola_time. During a scan the OLA software injects fake timestamped records flagged with Flag_Status = 3. These records are removed from the dataset during the L0 to L1 processing. The first record rom each L0 file is also removed from each L1 data file.

There are two lookup tables in the calibration file that are used to calibrate the range data in the OLA L1 file. One to calibrate the range for the High Energy Laser Transmitter (RANGE_HELT) and another for the Low Energy Laser Transmitter (RANGE_LELT). The first value in the table is the fixed offset. The uncalibrated intensity value is then used as an index into the table to find the value which must be added to the uncalibrated range according to the following algorithm:

Calibrated Range(mm) = Uncalibrated Range (mm) + fixed offset (mm) + LUT[uncalibrated intensity]

where uncalibrated intensity is rounded to the nearest integer.

OLA SoH Level 1 data are also in binary table format separated by Power Cycle. SoH L1 data has physical variables (such as temperatures) that are calibrated. Some of the Boolean flags have been consolidated into one flag, which is the product of several boolean flags from SoH L0. Also, the alignment into 32-bit words is removed so there are no spare bits to reduce the size of the files. Note that for SOH Level 0 and Level 1 the initial rows in the binary table may show invalid values for the OLA time tag (t0_seconds for SOH L0 and soh_ola_time for SOH L1). These values reflect that there is a finite elapsed time between instrument powerup and receipt of the first reference time from the S/C clock. A value greater than zero in the time_ref_seconds field in the OLA SOH L0 table is an indicator of when the OLA time tag is valid.

4.3.2.3 Level-2 Calibrated Data

Pipeline processing begins by converting OLA level 0 science data products to OLA level 1 science data products. Then OLA SPICE C-kernels are generated that describe the attitude of the OLA mirror in the OLA reference frame from the OLA level 1 science data products. Finally, the OLA SPICE C-kernels with the ranges and scan angles (OLA Level 1) are converted to body fixed coordinates (OLA Level 2) using the appropriate SPICE data. In other words, a 3-D point cloud is created from OLA measurements. OLA Level 2 data products are then used by the Altimetry Working Group to create subsequent shape models using the University of Hawaii's School of Ocean and Oceanography (SOEST) Generic Mapping Tool (GMT) block median directly or with several steps involving splitting the data into subsets ("mapolas") and then recombining them. The second workflow is similar to the process the OSIRIS-REx imaging team is undertaking using Bob Gaskell's Stereo Photoclinometry (SPC) processing. The resulting data products are described in an accompanying Altimetry Working Group Data SIS.

The creation of the reprocessed Level-1 Reduced Data, which used updates to the calibration tables and to the calibration algorithm which take into account the OLA demodulator state, resulted in the reprocessing of the Level-2 science data. The reprocessed Level-2 science data is contained in the data_calibrated_v2 collection (Table 3).

OLA Science Level 2 data product (OLA L2) contain all the information in OLA L1 along with body-fixed point cloud data obtained via s/c ephemerides SPICE kernels. Time calculations are described in Section 4.4.2

The OLA L2 records are determined form the OLA L1 record, OLA CK, and relevant SPICE kernels using the SPICE library as follows:

```
olaPos = SPKPOS("ORX_OLA_ART", et, "IAU_BENNU", "NONE",
"BENNU");

scPos = SPKPOS("ORX", et, "IAU_BENNU", "NONE", "BENNU");

ola_frame = "ORX_OLA_HIGH" or "ORX_OLA_LOW" depending on the level
1 record laser selection

laser2body = PXFORM(ola_frame, "IAU_BENNU", et);

boresightDir = MXV(laser2body, {0.0, 0.0, 1.0});

convert olaPos from km to meters

convert scPos from km to meters

r = OLA range from level 1 record converted to meters

OLA level 2 spacecraft position = scPos

OLA level 2 target position = olaPos + r * boresightDir

OLA level 2 elongitude, latitude is determined from target position using SPICE RECLAT
```

An example of the SPICE kernel list (meta-kernel) required for processing OLA data from L1 to L2 are as follows:

```
ik/orx_ola_v01.ti',
lsk/naif0012.tls,
sclk/orx_sclkscet_00046.tsc',
fk/orx_v14.tf,
pck/pck00010.tpc',
pck/bennu_v14.tpc,
spk/orx_struct_v04.bsp', '
ck/orx_sc_rel_181203_181209_v01.bc',
ck/orx_ola_181204_scil2id01000.bc',
spk/de424.bsp', '
spk/bennu_refdrmc_v1.bsp',
spk/ orx_181203_190302_190104_od085_v1.bsp',
dsk/ bennu_g_03170mm_spc_obj_0000n00000_v020.bds',
```

Note the versions and dates of these kernels will change over the course of the mission, but the types of kernels will remain the same. OLA CK kernels can be acquired from https://naif.jpl.nasa.gov/pub/naif/pds/pds4/orex/orex_spice/spice_kernels/ck/. The NAIF supplied subset function will not return OLA CKs. The OLA CK files must be downloaded manually. These files are related to the observations by scanid number (idxxxxxx). Alternatively, all the information needed to determine the scan mirror position is included in the corresponding L1 SOH data product. The algorithm for this

computation is given in "OLA_level1_to_CK_description.txt" located in the document collection.

OLA L2 do not account for any corrections to the ephemeris that has been derived from the science team after their generation. Any such corrections will be delivered as Altimetry Level 1 and 2 OLA products and are part of the Altimetry Working group data flow that is also discussed in the accompanying Altimetry Working Group Data SIS. The OLA L2 data products possess calibrated physical units (i.e., ranges in millimeters and scan angles in degrees or milliradians as opposed to voltages and digital numbers). One data record is available for each OLA shot fired. The number of records in a level-1 and level-2 file is expected to be identical.

4.3.2.4 Level-2A Strip-adjusted Calibrated Data

OLA Level 2 files are produced in the OLA pipeline using reconstructed SPICE SPK (ephemeris) and C-Kernels (pointing) to provide an initial estimate of the location of the 3-D point cloud produced by OLA in the asteroid body-fixed reference frame. However, these points will not necessarily match up with other OLA L2 point clouds due to errors in the spacecraft trajectories and pointing. These errors can be minimized through a process we call strip-adjustment (also sometimes known as cross-over analysis). Each individual OLA scan is adjusted using either a keypoint approach or an iterative closestpoint algorithm where differences between individual OLA scans are minimized. This minimization is done judiciously to ensure that the shape model closes appropriately across its circumference such that no offsets exist. Once these adjustments have been applied to all OLA L2 files, and all the scans are further adjusted to be in-line with the bests estimates of the spacecraft trajectory provided by the OSIRIS-REx flight dynamics team, we provide a new set of OLA L2 files called OLA Level 2A. The 'A' implies that the files have been adjusted and will match the OLA derived shape models produced by the AltWG. Additional information on the details of the adjustment is provided in the AltWG SIS.

OLA Science Level 2A data product (OLA L2A) contains all the information in OLA L2. The only difference is that the body-fixed point cloud data and the spacecraft position will differ from what is found in an original OLA L2 file to account for the adjustment applied to the OLA L2 files to produce the OLA L2A. OLA L2A, thus, do account for any corrections to the ephemeris that has been derived from the science team after their generation. The OLA L2A data products possess calibrated physical units (i.e., ranges in millimeters and scan angles in degrees or milliradians as opposed to voltages and digital numbers). One data record is available for each OLA shot fired. The OLA L2A files also have several additional status flags: a flag status of 4 implies a possible particle detection; flag status of 5 is for mirror positions that are at the beginning or edge of a scan. Flags 4 and 5 are not used for strip-adjustments since Flag 4 data are off-body and flag 5 data can preferentially weight scan edges in adjustments. Flag 6 is valid data with the value of albedo channel updated to provide a calibrated relative albedo estimate. See additional details in section 5.2.6. The flags 100 to 106 are identical to 0-6 but also indicate that the OLA demodulator is on. The OLA L2A products are derived (OSIRIS-REx L3) data products referred to as "L2" because they are identical in format and usage to the L2

products described above. They are expected to be delivered to the PDS with OLA derived products from the mission.

4.3.3 Data Flow

OLA uncalibrated and calibrated data products are built up in sequential data processing steps addressing specific corrections or calibrations. All data products are built from raw telemetry ingested into the SPOC data repository system. The OLA data processing pipeline queries the SPOC data repository directly for new raw science. The OLA data files generated by the OLA pipeline are returned to the SPOC data repository for storage. The OSIRIS-REx Instrument and Science Teams access the data repository through a query tool.

4.3.4 Labeling and Identification

OSIRIS-REx science data products are named according to the OSIRIS-REx Naming Conventions Document (UA-HBK-9.4.4-905). The following paragraphs are excerpts of this document that describe how OLA files are named. The generalized OLA file naming convention for the science data is as follows is:

Where UTC Time in the OLA case is YYYYMMDD calculated from the SCLK time of the first record in the data file. SCLK time is time data taken in spacecraft clock ticks. UTC time is included in the filename to uniquely identify the data in case of rollover of the start scan id or the Power Cycle counter.

The instrument is one of the following:

Table 4. Instrument Abbreviations

Instrument Name	Abbreviation
MapCam	map
PolyCam	pol
SamCam	sam
OLA	ola
OVIRS	ovr
OTES	ote
REXIS	rex

The product type and processing level defines the data product type and the level of processing done on the data. The product types and processing levels for OLA are:

Table 5. OLA Data Product Type

file name string	Definition
scil0idxxxxx	OLA Level 0 science data product
sohl0idxxxxx	OLA Level 0 state of health data product
scillidxxxxx	OLA Level 1 science data product
sohl1idxxxxx	OLA Level 1 state of health data product
scil2idxxxxx	OLA Level 2 science data product
scil2aidxxxxx	OLA Level 2A science data product

where idxxxxx is the start scan id of the product for OLA science data, or the power cycle counter for the OLA state of health data.

The PDS type file suffix indicates the type of file. OLA science and SOH data products have one file type suffix, .dat for binary tables. All OLA files are created with detached PDS labels. The labels are PDS compliant XML format labels with the file type suffix of .xml. Examples of labels can be found in Section 7.3. An example filename for an OLA Level 2 science data product binary table is:

20190306 olal2id60000.dat

Data that has been re-processed using the updated calibration method will have identical filenames as the previously processed data. The updated files will be distinguishable by their collection. Updated products will reside in versioned collections: data_reduced_v2 and data_calibrated_v2.

4.4 Standards Used in Generating Data Products

4.4.1 PDS Standards

All data products described in this SIS conform to the 1.7 PDS4 Information Model and standards as described in the PDS Standards document noted in the Applicable Documents section of this SIS. Prior to public release, all data products will have passed both a data product format PDS peer review and a data product production pipeline PDS peer review to ensure compliance with applicable standards.

4.4.2 Time Standards

Time Standards used by the OSIRIS-REx mission conform to PDS time standards. All OSIRIS-REx data products above Level 0 contain both the spacecraft clock time of data acquisition in SCLK and a conversion to UTC to facilitate comparison of data products. The level 0 data products only contain the time information as kept by the OLA CPU clock; updated at intervals by the spacecraft clock. This time information is known as OLA time and is converted to SCLK and UTC for products above level 0.

The OLA L0 product contains time stamp information for each shot fired – scan ola time. The shot rate is such that the smallest time increment between two successive shots is 0.0135ms. This is smaller than resolution of the spacecraft clock, which is 0.01526ms. Thus, the OLA L1, L2 and L2A products also specify an SCLK offset for each shot in addition to SCLK. This is a value in units of spacecraft clock ticks (2⁻¹⁶ seconds) that should be added to the SCLK value to derive a precise timestamp for the shot.

The OLA L0 data contain several time fields which are used to arrive at a level 1 timestamp for a given laser point:

- Scan Block Time Seconds and Subseconds: This time refers to the time assigned by the I/O FPGA for the first point in each scan block. This field will have the same value for all points in a scan block. This field is not used in the time calculations as its value is represented in the Scan OLA Time field, mentioned below.
- Time Reference Seconds and Subseconds: This is a sampling of the OLA CPU time for the first point in each scan block. This field will have the same value for all points in a scan block. Its value is derived from a measurement from a point that it not necessary the first point in a block (data collection packets, where the measurement is made are not the same as scan blocks).
- Time Delta to MRTU Ref: The difference between the OLA CPU's time and the spacecraft's time, updated at 1 Hz. This field will have the same value for several blocks in a row.
- Scan OLA Time This field is calculated during ingest from the OLA scan block and represents the I/O FPGA assigned time for each laser point.

The OLA level 1 data contain the following time field:

• Scan OLA Time: This is computed from the time fields in the level 0 data and represents a spacecraft time for each laser point. Note that when looking at the L0 and L1 data products the Scan OLA time is different between the two products. The L1 Scan OLA Time is the corrected time.

The general outline of time calculations is as follows: The CPU time samples for the first point in each block are used to scale the I/O FPGA assigned time for each point, yielding a CPU time for each point. Then the Time Delta to MRTU Ref values are used to interpolate spacecraft times for each point.

When converting from I/O FPGA time to CPU time, if the difference between the CPU time and I/O time for a block has not changed from the previous block, the current block's CPU time is not used in the calculation. In this case, the CPU time estimate is considered to be stale (not a unique measurement for the block). With these redundant CPU times discarded, the algorithm is a straightforward linear interpolation of the I/O times to the CPU time space.

When converting from CPU time to spacecraft time, if the value of the Time Delta to MRTU Ref field has not changed since the last block, the value is considered stale and discarded. Since the update could have arrived from the spacecraft at any time during the

previous block, the delta is applied to a point one half block time in the past. These assignments are then used in a linear interpolation of the CPU times to arrive at a spacecraft time for each point.

UTC is determined from OLA level 1 MET and MET offset using the SPICE library as follows:

```
scid = -64;
encodedSclk = SCENCD(scid, met) + met_offset;
et = SCT2E(scid, encodedSclk);
utc = ET2UTC(et, "ISOD", 6);
```

4.4.3 Coordinate Systems

All coordinate systems used by the OSIRIS-REx mission conform to IAU standards. A complete discussion of the coordinate systems and how they are deployed in the mission can be found in the document "OSIRIS-REx Coordinate System Plan" found in the archive documents directory.

4.4.4 Data Storage Conventions

All OLA data products are stored as little-endian binary table formats.

4.5 Data Validation

The SPOC has a comprehensive Verification and Validation Plan for all software used at or developed by the SPOC. All software is configuration controlled and any changes made follow the SPOC Configuration Control Plan, which includes substantive testing of changes. During day-to-day production of L0 data products from telemetry, check sums and spot checks are used to validate that software is producing data products correctly.

In addition to software types of verification and validation, each OSIRIS-REx data product has been peer reviewed for both PDS data format acceptability and scientific usefulness. No changes are expected to data formats after peer review. The SPOC Configuration Control Plan governs any changes, should they be needed.

5 Detailed Data Product Specifications

The following sections provide detailed data product specifications for each OLA L0 data product. These specifications will provide sufficient detail, so that data product users can read and interpret the products.

5.1 Data Product Structure and Organization

The OSIRIS-REx data archive is organized by instrument. The OLA portion of the archive is organized by, processing level, mission phase and finally by data product type.

OLA SoH and Science data are stored as a PDS4 compliant binary tab, with a detached PDS labels. Data are collected in files by Earth Day

5.2 Data Format Descriptions

5.2.1 OLA LO Science

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Defau It	Resolution	Frequency
Laser Selection (scan_laser_s election)	1	Specifies whether scan command applies to High Energy or Low Energy Laser	2	UnsignedLSB2	n/a	0:HELT 1:LELT	n/a		Each return
Power Cycle (ola_pwrup_co unter)	2	Power Cycle counter. Incremented by 1 for every Power On Self Test.	2	UnsignedLSB2	n/a		n/a		Each return
Scan Specific ID (scan_specific _id)	3	Unique identifier for active scan sequence (per Scan start command)	2	UnsignedLSB2	n/a	0 – 16383	n/a		Each return
Parameter Laser Selection (param_laser_ selection)	4	Specifies whether parameter set applies to High Energy (0) or Low Energy Laser (1)	2	UnsignedLSB2	n/a	0:HELT 1:LELT	n/a		Each return
Spare (param_spare)	5	Spare column	2	UnsignedLSB2	n/a		0		Each return
Parameter Set ID (parm_set_id)	6	Unique identifier for this parameter set	2	UnsignedLSB2	n/a	0 – 16383	n/a		Each return

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Defau It	Resolution	Frequency
Block Number (block_number)	7	Scan data block within this scanning sequence (since turn on).	2	UnsignedLSB2	n/a		0	1	Each return
Num Points In Block (block_point_c ount)	8	Number of points within this scan block.	2	UnsignedLSB2	n/a	0 - 500	500	1	Each return
Final Block (block_final_in dicator)	9	Final block indicator.	2	UnsignedLSB2	n/a	0:not last block 1: final block in scan data sequence	0	n/a	Each return
Decimation Factor (decimation_factor)	10	Decimation rate applied to current scan data.	2	UnsignedLSB2	n/a	0:Undecimat ed 1:2 2:10 3:100 4:1000	n/a	n/a	Each return
Scan Point Alignment Scale Factor (scan_point_ali gnment_scale)	11	Value of scan point alignment LSBit.	2	UnsignedLSB2	n/a	0: 1 ms 1: 10 ms 2: 100 ms 3: 1000 ms			Each return
Scan Pattern (scan_pattern)	12	Selected Scan Pattern.	2	UnsignedLSB2	n/a	0: Raster 1:Linear	n/a		Each return

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Defau It	Resolution	Frequency
						2: Fixed			
Scan Orientation (scan_orientati on)	13	Scan orientation.	2	UnsignedLSB2	n/a	0:azimuth 1: elevation			Each return
Imaging Settings (imaging_settings)	14	Imaging Settings.	2	UnsignedLSB2	n/a	1: Image with positive returns and nulls 2: Test Pattern	n/a		Each return
Scan Mode (scan_mode)	15	Scan sweep mode.	2	UnsignedLSB2	n/a	0: continuous 1:single- sweep	n/a		Each return
Receiver Threshold (receiver_thres hold)	16	Receiver threshold.	2	UnsignedLSB2	n/a	0: low threshold 1: high threshold	n/a		Each return
Spare (scan_block_s pare)	17	Spare column.	2	UnsignedLSB2	n/a		0		Each return
SC Clock Partition (patition)	18	Spacecraft clock partition used for processing.	2	UnsignedLSB2	n/a		1		Each return
Scan Block Time Seconds (seconds_raw)	19	Reference time for first point in scan block in	4	UnsignedLSB4	sec		n/a	1	Each return

Field	Field	Description	Size	Data Type	Units	Range	Defau	Resolution	Frequency
(table field name)	Number		(Bytes)				It		
		32-bit seconds since 2000-01-01T12:00:00.							
Scan Block Time Subseconds (subseconds_r aw)	20	Subseconds counts of reference time for first point in scan block, 1/(2**16) seconds per count.	2	UnsignedLSB2			n/a	2.00E-16	Each return
First Point of Block Seconds (first_point_block_sec)	21	Time of generation of first point in the block in 32-bit seconds since 2001-01-01T12:00:00	4	UnsignedLSB4	sec		n/a	1	Each return
First Point of Block Subseconds (first_point_blo ck sub)	22	Subseconds counts of most recent time update received from spacecraft, 1/(2**16) seconds per count.	2	UnsignedLSB2			n/a	2.00E-16	Each return
Time Delta To MRTU Ref (tdelta_to_mrtu _ref)	23	Time offset between OLA Time and most recent time update command.	4	UnsignedLSB4	Micro- seconds	Time of generation of first point in the block in 32-bit seconds since 2001-01-01T00:00:	0	1us	Each return

Field	Field	Description	Size	Data Type	Units	Range	Defau	Resolution	Frequency
(table field name)	Number		(Bytes)				lt		
Scan OLA Time	24	Ola Time tag for this	8	IEEE754LSBDouble	sec		n/a		Each return
(scan_ola_tim e)		scan record.	0	TELET 34E3DD0uble	360		II/a		Laciffetuiii
Spare	25								
(time_ref_spar e)		Spare column.	2	UnsignedLSB2	n/a		0		Each return
Range	26	Dange in millimeters	8	IEEE754LSBDouble	mm		n/a		Each return
(range)		Range in millimeters.	0	IEEE/34LSBDouble	mm		II/a	1mm	Each return
Azimuth	27								
(azimuth_sign ed)		Azimuth in milliradians.	8	IEEE754LSBDouble	mrad		n/a	0.05mrad	Each return
Elevation	28	Elevation in							
(elevation_sign ed)		milliradians.	8	IEEE754LSBDouble	mrad		n/a	0.05mrad	Each return
Intensity T0	29	Intensity of outgoing	8	IEEE754LSBDouble			n/a		Each return
(intensity_t0)		pulse.	0	IEEE/34L3BDouble			II/a		Each return
Intensity TRR	30	Intensity of received	8	IEEE754LSBDouble			n/a		Each return
(intensity_trr)		pulse.	0	ILLL134L3BD0uble			II/a		Lacifietum
	31	_				0: valid return			
Flag Status		Status of return. Reported by the	2	UnsignedLSB2		1: valid			Each return
(flag_status)		Reported by the instrument.	_	OlisiglieuLSB2		return with overflow			Lacifictani
						2: no return			

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Defau It	Resolution	Frequency
						3: missing sample			
Scan Point Align Diff (alignment_diff _signed)	32	Scan point difference relative to expected time offset: scan point time - (scan point -1)/scan rate.	2	SignedLSB2	Micro- seconds	-8192 to 8191			Each return

5.2.2 OLA LO SoH

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Default	Resolution	Frequency
Power Cycle (ola_pwrup_co unter)	1	Power Cycle counter. Incremented by 1 for every Power On Self Test. (POST)	2	UnsignedLSB2	n/a		n/a		
Clock Partition (partition)	2	Integer that defines spacecraft clock partition employed for processing.	2	UnsignedLSB2	n/a		n/a		
T0 Sec (t0_seconds)	3	Time of generation of SoH record in 32-bit seconds since 2000- 01-01T12:00:00 UTC.	4	UnsignedLSB4	sec	2**32-1	n/a		10Hz
T0 Subsec (t0_subsecond s)	4	Time of generation of SoH record in subsecond counts.	2	UnsignedLSB2	sec	2**16-1	n/a		10Hz

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Default	Resolution	Frequency
		1/(2**16) seconds per count.							
Spare (spare1)	5	Spare column	2	UnsignedLSB2	n/a		0		
TRef Sec (time_ref_seco nds)	6	Most recent time update received from spacecraft in 32-bit seconds since 2000-01-01T12:00:00UTC.	4	UnsignedLSB4	n/a	2**32-1	n/a		
TRef Subsec (time_ref_subs econds)	7	Most recent time update in subsecond counts. 1/(2**16) seconds per count.	2	UnsignedLSB2	n/a				
Spare (spare2)	8	Spare column.	2	UnsignedLSB2	n/a		0		
Time Delta MRTU (mrtu_ref_delta)	9	Time offset between OLA Time and spacecraft time per most recent time update command.	4	UnsignedLSB4	microseco nd	- 838860 8 to 838860 7	0		
Spare (spare3)	10	Spare column.	2	UnsignedLSB2	n/a		0		
Last Msg Inst (last_idp_msg_ instance)	11	Most recent command instance received from spacecraft.	2	UnsignedLSB2	n/a	Limit not req			
Last Msg ID (last_idp_msg_ id)	12	ID of most recent command instance received from spacecraft.	2	UnsignedLSB2					

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
Cmd Exe Counter (cmd_exe_cnt)	13	Counter for the number of commands executed (excluding Time Update command).	2	UnsignedLSB2	n/a	Limit not req			
Last Cmd Inst (last_cmd_exe _instance)	14	Instance index of the last executed instrument command, excluding time update and noop commands.	2	UnsignedLSB2	n/a	Limit not req			
Last Cmd ID (last_cmd_exe _id)	15	Command ID (IDP) of the last executed instrument command (excluding Time Update and NOOP commands).	2	UnsignedLSB2	n/a	Limit not req			
Cmd Rej Counter (cmd_rjct_cnt)	16	Counter for the number of commands rejected.	2	UnsignedLSB2	n/a	Limit not req			
No Op Counter (noop_cnt)	17	Number of NOOP commands received since OLA Powerup, with rollover at 65535.	2	UnsignedLSB2	n/a				
Ola State (state)	18	Indication of state of OLA software.	2	UnsignedLSB2	n/a	1:idle 2: standby 3: armed 4: operate			

Field	Field Number	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
						5: diagnost ic			
Helt Power (helt_power)	19	HELT power status.	2	UnsignedLSB2	n/a	0: off 1: on	0		
Lelt Power (lelt_power)	20	LELT power status.	2	UnsignedLSB2	n/a	0: off 1: on	0		
Spare (spare4)	21	Spare column.	2	UnsignedLSB2	n/a		0		
Current Min Range (current_min_r ange)	22	When scan command is active, returns the current minimum valid range.	4	UnsignedLSB4	cm	167772 15	n/a		
Avg Range (current_avg_r ange)	23	When scan command is active, return the average running valid range.	4	UnsignedLSB4	cm	Limit not req	n/a		
Msg Sent (msg_sent)	24	Count of messages sent to spacecraft, excluding state of health messages.	4	UnsignedLSB4	n/a	Limit not req			
Scan Duration (duration_last_ scan)	25	Time (duration) of last scan completed.	4	UnsignedLSB4	n/a	Limit not req			
Time Upd Not Present (time_upd_time out)	26	Indication that a valid Time Update command has not	2	UnsignedLSB2	n/a	0: no fault 1: fault	1		

Field	Field Number	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
		been received for >= 30 seconds.							
Time Tick Not Present (time_tick_time out)	27	Indication that a valid time tick has not been received for >= 30 seconds.	2	UnsignedLSB2	n/a	0: no fault 1: fault	1		
Msg Rej Wrong Block Length (msg_rej_wron g_block_len_m sg)	28	Wrong block length message.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Msg Rej Bad Cmd ID (msg_rej_bad_ cmd_id)	29	Bad command ID.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Msg Rej Bad Checksum (msg_rej_bad_ checksum)	30	Bad checksum.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Msg Rej Invalid Cmd Data (msg_rej_invali d_cmd_data)	31	Invalid command data received vs ICD.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Msg Rej Invalid State (msg_rej_invali d_state_	32	Command not valid in current OLA state.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
Msg Rej Active Fault (msg_rej_per_ active_fault)	33	Command rejected due to active fault.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Azimuth Scan (invalid_az_sca n_ang_spacing)	34	Invalid azimuth scan angular spacing.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Elevation Scan (invalid_el_sca n_ang_spacing)	35	Invalid elevation scan angular spacing	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Window Size (invalid_windo w_size)	36	Invalid window size.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Window Center Pos (invalid_windo w_center_pos)	37	Invalid window center position.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Scan Pattern (invalid_scan_ pattern)	38	Invalid scan pattern.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Scan Type	39	Invalid scan type.	2	UnsignedLSB2	n/a	0: no fault	0		

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
(invalid_scan_t ype)						1: fault			
Cmd Err Invalid Raw Req (invalid_raw_sc	40	Invalid raw scan data request.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
an_data_req)						1. Iddit			
Cmd Err Laser Not On (sel_laser_not_ on)	41	Laser component is not powered (it should be turned on prior to the Scan Start command).	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Input Check (invalid_input_ check)	42	Invalid combination of scan window size and center position.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Cmd Err Invalid Load File Cmd (file_cmd_err)	43	Invalid load file command (e.g., invalid file ID, block out of order, byte count out of range, etc.) or invalid Store File command or invalid Reboot command.	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Scan Az Out of FOV (scanning_az_ outside_fov)	44	Flag indicating detection of scanning azimuth outside the Field of View (FOV).	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		
Scan El Out of FOV	45	Flag indicating detection of scanning elevation outside the Field of View (FOV).	2	UnsignedLSB2	n/a	0: no fault 1: fault	0		

Field	Field Number	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
(scanning_el_o utside_fov)									
IP UDP Hdr Err	46	Flag indicating error			,	0: no fault			
(idp_udp_hdr_ err)		detected in IP or UDP Header.	2	UnsignedLSB2	n/a	1: fault	0		
CIP Hdr Err	47	Flag indicating error detected in CIP	2	UnsignedLSB2	n/a	0: no fault	0		
(cip_hdr_err)		Header.	2	OnsignedLSb2	П/а	1: fault	U		
IDP Err	48	Flag indicating error	2	UnsignedLSB2	n/a	0: no fault	0		
(idp_err)		detected in IDP.	2	OnsignedLSb2	П/а	1: fault	U		
Scan Buffer Overflow	49	Flag indicating OLA				0: no			
(scan_buffer_o verflow)		scan buffer overflow.	2	UnsignedLSB2	n/a	fault 1: fault	0		
Generic Sw Err	50	General software	0	Unaire ad CD2	7/2	0: no fault	0		
(generic_sw_er r)		exception.	2	UnsignedLSB2	n/a	1: fault	0		
Laser Check Fail	51	Flag indicating laser power on condition			,	0: no fault			
(laser_check_f ailure)		detected from an unpowered laser.	2	UnsignedLSB2	n/a	1: fault	0		
Power Fail	52	Flag indicating power not applied or				0: no fail			
(laser_power_f ailure)		uncommanded loss of laser power after commanded.	2	UnsignedLSB2	n/a	1: fail	0		

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
Active Flash Write (active_flash_w rite)	53	Flag indicating OLA is currently writing data to Flash.	2	UnsignedLSB2	n/a	0: Inactive 1: Active	0		
Dmod Heater Status (dmod_heater_ status)	54	Status of OLA command of DMOD heater	2	UnsignedLSB2	n/a	0: off 1: on			
Comm Err (comm_err)	55	Communication error (e.g., framing, parity, etc)	2	UnsignedLSB2	n/a	0: No fault 1: Fault			
Spare (spare5)	56	Spare column.	2	UnsignedLSB2	n/a				
Data Buffer Util (scan_data_buf _util)	57	Percent utilization of Scan Data Overflow buffer.	2	UnsignedLSB2	percent	0-100	0		
Missed Time Ticks (missed_time_t ick_counter)	58	Count of seconds since the most recently received Time Tick.	2	UnsignedLSB2	sec	0-255	255		
Missed Time Updates (missed_time_ uodate_counte r)	59	Count of seconds since the most recently received valid Time Update.	2	UnsignedLSB2	sec	0-255	255		
Scan Completion Status	60	Status of most recently executed (or currently executing) scan.	2	UnsignedLSB2	n/a	0:ok			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
(scan_completi on_status)						1: FIFO Overflo w 2: Send/ receive thread sync timeout			
Las Pulse Rep Rate (laser_rep_rate)	61	Calculated laser pulse rate from the TIM/PEAK board in units of pulse/100 ms	2	UnsignedLSB2	n/a		0		
Laser Over Temp (laser_over_te mp_	62	Laser over temperature flag monitor.	2	UnsignedLSB2	n/a	0: no fault 1: fault			
Laser Under Temp (laser_under_t emp)	63	Laser under temperature flag monitor.	2	UnsignedLSB2	n/a	0: no fault 1: fault			
Curr Report HELT (laser_ready_h elt)	64	Laser input current monitor for HELT	2	UnsignedLSB2	n/a	0: off 1: on			
Curr Report LELT (laser_ready_le lt)	65	Laser input current monitor for LELT	2	UnsignedLSB2	n/a	0: off 1: on			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
DMOD Temp Failure (dmod_temper ature_failure)	66	Failure of sensor head demodulator chassis temperature sensor.	2	UnsignedLSB2	n/a	0: no fault 1: fault			
Spare (spare6)	67	Spare column	2	UnsignedLSB2		n/a			
Spare (hw_status_wo rd2)	68	Spare column	4	UnsignedLSB4		n/a			
Spare (spare8)	69	Spare column	4	UnsignedLSB4		n/a			
Mirror Temp (mirror_therm)	70	Mirror Temperature.	2	SignedLSB2		-32768 to 32767			
Electronics Temp (case_therm)	71	Main electronics temperature sensor.	2	SignedLSB2		-32768 to 32767			
Sensor Head Pos Temp (sensor_therm)	72	Sensor Head position temperature sensor.	2	SignedLSB2		-32768 to 32767			
Head Chassis 1 Temp (sh_temp_1)	73	Sensor Head Chassis temperature sensor 1.	2	SignedLSB2		-32768 to 32767			
Head Chassis 2 Temp (sh_temp_2)	74	Sensor Head Chassis temperature sensor 2.	2	SignedLSB2		-32768 to 32767			

Field	Field Number	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)			(Bytes)						
Head Chassis 3 Temp	75	Sensor Head Chassis	2	SignedLSB2		-32768 to	-		
(sh_temp_3)		temperature sensor 3.				32767			
ADP Temp	76	ADP Temperature	2	SignedLSB2		-32768 to			
(rx_apd_temp)		sensor.	_	0.9.1042022		32767			
DMOD Kaman Temp	77	DMOD Temperature	2	Ciarra di CDO		-32768			
(dmod_temp)		sensor.	2	SignedLSB2		to 32767	-		
Hi Pow Las TEC 1 Temp	78	High Power Laser				-32768			
(helt_tec_diode _temp)		(TEC) temperature sensor 1.	2	SignedLSB2		to 32767	-		
Hi Pow Las TEC 2 Temp	79	High Power Laser				-32768			
(helt_tec_cryst al_temp)		(TEC) temperature sensor 2.	2	SignedLSB2		to 32767	-		
Low Pow Las TEC 1 Temp	80	Low Power Laser				-32768			
(lelt_tec_diode _temp)		(TEC) temperature sensor 1.	2	SignedLSB2		to 32767			
Low Pow Las TEC 2 Temp	81	Low Power Laser				-32768			
(lelt_tec_crysta l_temp)		(TEC) temperature sensor 2.	2	SignedLSB2		to 32767			
ADC Bias Plus Refv	82	ADC Bias positive reference voltage.	2	SignedLSB2		-32768 to 32767			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
(adc_bias_pos _ref_volt)									
ADC Bias Neg Refv	83	ADC Bias negative	2	SignedLSB2		-32768 to			
(adc_bias_neg _ref_volt)		reference voltage	2	SigneuLSb2		32767			
AD590 Spare Temp	84	Spare AD590	2	Ciana di CDO		-32768			
(spare_ad590_ temp)		temperature sensor.	2	SignedLSB2		to 32767			
Tim Board Temp	85	TIM/Peak board temperature.	2	SignedLSB2		-32768 to			
(tim_pk_temp)		temperature.				32767			
IO Board 1 Temp	86	IO Board CCA Temp	2	SignedLSB2		-32768 to			
(io_brd_temp1)		1.				32767			
IO Board 2 Temp	87	IO Board CCA Temp 2.	2	SignedLSB2		-32768 to			
(io_brd_temp2)		2.				32767			
Head Heater 1 Temp	88	Sensor Head HELT Chassis temperature	2	SignedLSB2		-32768			
(helt_chassis_t emp_plus_y)		sensor in the +Y direction.	2	SigneuLSb2		to 32767			
Head Heater 2 Temp	89	Sensor Head HELT Chassis temperature	2	SignedLSB2		-32768 to			
helt_chassis_te mp_neg_y)		sensor in the -Y direction.		JigricaLOD2		32767			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
Plus5V	90	Voltage monitor of the	0	0: "000		-32768			
(plus_5v_rail)		+5V input rail.	2	SignedLSB2		to 32767			
Neg5V	91	Voltage monitor of the	0	0: "000		-32768			
(neg_5v_rail)		-5V input rail.	2	SignedLSB2		to 32767			
Plus15V	92	Voltage monitor of the	2	Ciara di CDO		-32768			
(plus_15v_rail)		+15V input rail.	2	SignedLSB2		to 32767			
Neg15V	93	Voltage monitor of the	2	Ciara di CDO		-32768			
(neg_15v_rail)		-15V input rail	2	SignedLSB2		to 32767			
Plus16DOT5V	94	Voltage monitor of the				-32768			
(plus_16_5v_ra il)		+16.5V input rail	2	SignedLSB2		to 32767			
Ground	95	Voltage monitor of the	0	0:		-32768			
(ground_ref)		ground reference.	2	SignedLSB2		to 32767			
Last Gain AZ Autocal Plus5V	96	Last reading of the				-32768			
		Mirror Position Sensor Azimuth ADC auto-	2	SignedLSB2		to			
(mir_pos_acs_ az_plus_5v)		calibration +5V gain.				32767			
Last Gain EL Autoal Plus5V	97	Last reading of the				-32768			
(mir_pos_acs_		Mirror Position Sensor Elevation ADC auto-	2	SignedLSB2		to 32767			
el_plus_5v)		calibration +5V gain.				32/0/			
Last Gain AZ Autocal Neg5V	98	Last reading of the Mirror Position Sensor Azimuth ADC auto- calibration -5V gain.	2	SignedLSB2		-32768 to 32767			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
(mir_pos_acs_ az_neg_5v)									
Last Gain EL Autocal Neg5V	99	Last reading of the Mirror Position Sensor	2	SignedLSB2		-32768 to			
mir_pos_acs_e I_neg_5v)		Elevation ADC auto- calibration -5V gain.		Ü		32767			
Last Ground AZ Autocal	100	Last reading of the Mirror Position Sensor Azimuth ADC auto-	2	SignedLSB2		-32768 to			
(mir_pos_acs_ az_ground)		calibration ground reference		Olg/IOGEOD2		32767			
Last Ground EL Auctocal	101	Last reading of the Mirror Position Sensor Elevation ADC auto-	2	SignedLSB2		-32768 to			
mir_pos_acs_e l_ground)		calibration ground reference.	2	SigneuLSb2		32767			
OLA Reserved Word1	102	OLA reserved word.	4	UnsignedLSB4					
(reserved1)									
OLA Reserved Word2	103	OLA reserved word.	4	UnsignedLSB4					
(reserved2)									
OLA Reserved Word3	104	OLA reserved word.	4	UnsignedLSB4					
(reserved3)									

5.2.3 OLA L1 Science

OLA Science Level 1 data product (OLA L1) contains the most basic OLA measurement data in a binary table format separated by

day and scan sequence ID (which corresponds to a single OLA observation). OLA L1 data has a time correction applied to the scan_ola_time, with the sclk offset applied to the scan_ola_time (see Section 4.4.2). During a scan the OLA software injects fake timestamped records flagged with Flag_Status = 3. These records are removed from the dataset during the L0 to L1 processing. OLA L1 data are stored in calibrated physical units (i.e., ranges in millimeters and scan angles in degrees or milliradians as opposed to voltages and digital numbers). One data record is available for each OLA shot fired. The table below provides the type and size of each parameter.

Field (table field name) MET	Field Number	Description Spacecraft clock time.	Size (Bytes)	Data Type ASCII_String	Units s/c ticks	Range	Default	Resolution	Frequency Each return
MET Offset (met_offset)	2	Value in units of ticks (2^-16 seconds) that should be added to MET to give precise time. This is needed because there is not enough precision in the MET field. Example: If MET is 1/0521165299.31170 and MET OFFSET is 0.5, then the lidar point was acquired at exactly midway between 1/0521165299.31170 and 1/0521165299.31171.	8	IEEE754LSBDouble	s/c ticks		n/a		Each return
Scan OLA Time (scan_ola_time)	3	Ola Time tag for this scan record.	8	IEEE754LSBDouble	sec		n/a		Each return

Power Cycle (power_cycle)	4	Power Cycle counter. Incremented by 1 for every Power On Sself Test.	2	SignedLSB2	n/a		n/a	Each return
Laser Selection (laser_selection)	5	Specifies whether scan command applies to High Energy or Low Energy Laser	2	SignedLSB2	n/a	0:HELT 1:LELT	n/a	Each return
Scan Pattern (scan_mode)	6	Selected Scan Pattern.	1	SignedLSB	n/a	0: Raster 1: Linear 2: Fixed	n/a	Each return
Flight Software Version (sw_version_d etected cal v2.0: fsw_version, cal v1.0)	7	Flight software version number.	1	UnsignedLSB	n/a	0: old 1: new	n/a	Each Return
Flag Status (flag_status)	8	Status of return. Supplemented with additional information from the OLA state of health; indicating whether or not demodulator was on at the time of return.	2	SignedLSB2	n/a	0: valid return 1: valid return with overflow 2: no return 3: missing sample 100: valid, demodulat or on 101: valid return with overflow,		Each return

						demodulat or on 102: no return, demodulat or on			
						103: missing sample, demodulat or on			
Range (range)	9	Range in millimeters.	8	IEEE754LSBDouble	mm		n/a	1mm	Each return
Azimuth (azimuth)	10	Azimuth in milliradians.	8	IEEE754LSBDouble	mrad		n/a	0.05mrad	Each return
Elevation (elevation)	11	Elevation in milliradians.	8	IEEE754LSBDouble	mrad		n/a	0.05mrad	Each return
Intensity T0) (intensity_t0	12	Intensity of outgoing pulse.	8	IEEE754LSBDouble			n/a		Each return
Intensity TRR (intensity_trr)	13	Intensity of received pulse.	8	IEEE754LSBDouble			n/a		Each return

5.2.4 OLA L1 SoH

OLA SoH Level 1 data will be in binary table format separated by day. Here data is stored in physical units obtained via a calibration table. SoH L1 data will have calibrated values (such as temperatures). Some of the Boolean flags have been consolidated into one flag, which is the product of several boolean flags from SoH L0. Also, the 32-bit word requirement is removed so there are no spare bits.

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Default	Resolution	Frequency
MET (met)	1	Spacecraft clock time	18	ASCII_String	s/c ticks		n/a		
UTC (soh_ola_date)	2	UTC Time (yyyy-doyThh:mm:ss.ssssss)	24	ASCII_String	n/a		n/a		
SOH OLA Time (soh_ola_time)	3	Ola Time tag for this SOH record.	8	IEEE754LSBDouble			n/a		
Power Cycle (ola_pwrup_co unter)	4	Power Cycle counter. Incremented by 1 for every POST.	2	UnsignedLSB2	n/a		n/a		
Current Min Range (current_min_r ange)	5	When scan command is active, returns the current minimum valid range.	8	IEEE754LSBDouble	cm	16.777215 km			
Avg Range (current_avg_r ange)	6	When scan command is active, return the average running valid range.	8	IEEE754LSBDouble	cm	Limit not req			
Duration_Last_ Scan (duration_last_ scan_x)	7	Time (duration) of last scan completed . in units of 0.01 seconds.	8	IEEE754LSBDouble	0.01 seconds	Limit not req			
Mirror Temp (mirror_therm_ x)	8	Mirror Temperature.	8	IEEE754LSBDouble	celsuis	55 yellow high 60 red high			

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Default	Resolution	Frequency
Electronics Temp (case_therm_x)	9	Main electronics temperature sensor.	8	IEEE754LSBDouble	celsius	50 yellow high 55 red high			
Sensor Head Pos Temp (sensor_therm _x)	10	Sensor Head position temperature sensor.	8	IEEE754LSBDouble	celsius	Limit not req			
Head Chassis 1 Temp (sh_temp_1_x)	11	Sensor Head Chassis temperature sensor 1.	8	IEEE754LSBDouble	celsius	Limit not req			
Head Chassis 2 Temp (sh_temp_2_x)	12	Sensor Head Chassis temperature sensor 2.	8	IEEE754LSBDouble	celsius	Limit not req			
Head Chassis 3 Temp (sh_temp_3_x)	13	Sensor Head Chassis temperature sensor 3.	8	IEEE754LSBDouble	celsius	Limit not req			
ADP Temp (rx_apd_temp_ x)	14	ADP Temperature sensor.	8	IEEE754LSBDouble	celsius	45 yellow high 50 red high			
DMOD Kaman Temp (dmod_temp_x	15	DMOD Temperature sensor.	8	IEEE754LSBDouble	celsius	47 yellow high 50 red high			
Hi Pow Las TEC 1 Temp	16	High Power Laser (TEC) temperature sensor 1.	8	IEEE754LSBDouble	celsius	Limit not req			

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Default	Resolution	Frequency
(helt_tec_diode _temp_x)									
Hi Pow Las TEC 2 Temp (helt_tec_cryst al_temp_x)	17	High Power Laser (TEC) temperature sensor 2.	8	IEEE754LSBDouble	celsius	Limit not req			
Low Pow Las TEC 1 Temp (lelt_tec_diode _temp_x)	18	Low Power Laser (TEC) temperature sensor 1.	8	IEEE754LSBDouble	celsius	Limit not req			
Low Pow Las TEC 2 Temp (lelt_tec_crysta l_temp_x)	19	Low Power Laser (TEC) temperature sensor 2.	8	IEEE754LSBDouble	celsius	Limit not req			
ADC Bias Plus Refv (adc_bias_pos _ref_volt_x)	20	ADC bias positive reference voltage.	8	IEEE754LSBDouble	volts	4.5 red low 4.2 yellow low 5.25 red high 5.5 red high			
ADC Bias Neg Refv (adc_bias_neg _ref_volt_x)	21	ADC bias negative reference voltage.	8	IEEE754LSBDouble	volts	-5.5 red low -5.25 yellow low			

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Default	Resolution	Frequency
						-4.75 yellow high -4.5 red high			
AD590 Spare Temp (spare_ad590_ temp_x)	22	Spare AD590 temperature sensor.	8	IEEE754LSBDouble	celsius	Limit not req			
Tim Board Temp (tim_pk_temp_ x)	23	TIM/Peak board temperature.	8	IEEE754LSBDouble	celsius	80 yellow high 85 red high			
IO Board 1 Temp (io_brd_temp1 _x)	24	IO Board CCA Temp 1.	8	IEEE754LSBDouble	celsius	80 yellow high 85 red high			
IO Board 2 Temp (io_brd_temp2 _x)	25	IO Board CCA Temp 2.	8	IEEE754LSBDouble	celsius	80 yellow high 85 red high			
Head Heater 1 Temp (helt_chassis_t emp_plus_y_x)	26	Sensor Head HELT chassis Temperature in the +Y direction.	8	IEEE754LSBDouble	celsius	Limit not req			
Head Heater 2 Temp (helt_chassis_t emp_neg_y_x)	27	Sensor Head HELT chassis temperature in the –Y direction.	8	IEEE754LSBDouble	celsius	Limit not req			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
Plus5V (plus_5v_rail_x)	28	Voltage monitor of the +5V input rail.	8	IEEE754LSBDouble	volts	4.5 red low 4.75 yellow low 5.25. yellow high 5.5 red high			
Neg5V (minus_5v_rail _x)	29	Voltage monitor of the -5V input rail.	8	IEEE754LSBDouble	volts	-5.5 red low 5.25 yellow low -4.75 yellow high -4.5 red high			
Plus15V (plus_15v_rail_ x)	30	Voltage monitor of the +15V input rail.	8	IEEE754LSBDouble	volts	14 red low 14.25 yellow low 15.75 yellow high 16 red high			
Neg15V (minus_15v_rai l_x)	31	Voltage monitor of the -15V input rail	8	IEEE754LSBDouble	volts	-16 red low			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
						-15.75 yellow low			
						-14.25 yellow high			
						-14 red high			
	32					15.2 red low			
Plus16DOT5V		Valta na manitan af th				16.05 yellow low			
(plus_16_5v_ra il_x)		Voltage monitor of the +16.5V input rail	8	IEEE754LSBDouble	volts	16.95 yellow high			
						17.8 red high			
	33					-0.5 red low			
Ground		Voltage monitor of the				-0.25 yellow low			
(ground_ref)		ground reference.	8	IEEE754LSBDouble	volts	0.25 yellow high			
						0.5 red high			
Last Gain AZ Autocal Plus5V	34	Last reading of the Mirror Position Sensor	8	IEEE754LSBDouble	volts	Limit not			
(mir_pos_acs_ az_plus_5v_x_		Azimuth ADC auto- calibration +5V gain.		LEET OF LODD OUDIG	VOILO	req			

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
(table field name)	Number		(Bytes)						
Last Gain EL Autocal Plus5V (mir_pos_acs_ el_plus_5v_x)	35	Last reading of the Mirror Position Sensor Elevation ADC auto- calibration +5V gain.	8	IEEE754LSBDouble	volts	Limit not req			
Last Gain AZ Autocal Neg5V (mir_pos_acs_ az_minus_5v_ x)	36	Last reading of the Mirror Position Sensor Azimuth ADC auto- calibration -5V gain.	8	IEEE754LSBDouble	volts	Limit not req			
Last Gain EL Autocal Neg5V (mir_pos_acs_ el_minus_5v_x)	37	Last reading of the Mirror Position Sensor Elevation ADC auto- calibration -5V gain.	8	IEEE754LSBDouble	volts	Limit not req			
Last Ground AZ Autocal (mir_pos_acs_ az_ground_x)	38	Last reading of the Mirror Position Sensor Azimuth ADC auto- calibration ground reference	8	IEEE754LSBDouble	volts	Limit not req			
Last Ground EL Auctocal (mir_pos_acs_ el_ground_x)	39	Last reading of the Mirror Position Sensor Elevation ADC auto- calibration ground reference.	8	IEEE754LSBDouble	volts	Limit not req			

5.2.5 OLA L2 Science

OLA Science Level 2 data product (OLA L2) contains all the information in OLA L1 along with body-fixed point cloud data obtained via s/c ephemerides spice kernels. OLA L2 data has no corrections applied. Here data is stored in calibrated physical units (i.e., ranges in millimeters and scan angles in degrees or milliradians as opposed to voltages and digital numbers). One data record is available for each OLA shot fired. The table below provides the type and size of each parameter.

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Def ault	Resolution	Frequency
MET (met)	1	Spacecraft clock time	18	ASCII_String	s/c ticks		n/a		Each return
MET Offset (met_offset)	2	Value in units of ticks (2^-16 seconds) that should be added to MET to give precise MET. This is needed because there is not enough precision in the MET field. Example: If MET is 1/0521165299.31170 and MET OFFSET is 0.5, then the lidar point was acquired at exactly midway between 1/0521165299.31170 and 1/0521165299.31171.	8	IEEE754LSBD ouble	s/c ticks		n/a		Each return
UTC (utc)	3	UTC Time (yyyy- doyThh:mm:ss.ssssss)	24	ASCII_Time	n/a		n/a		Each return
ET (et)	4	Ephemeris time	8	IEEE754LSBD ouble	second				Each return
Scan OLA Time (scan_ola_time)	5	Ola Time tag for this scan record.	8	IEEE754LSBD ouble	sec		n/a		Each return

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Def ault	Resolution	Frequency
Power Cycle (power_cycle)	6	Power Cycle counter. Incremented by 1 for every POST.	2	SignedLSB2	n/a		n/a		Each return
Laser Selection (laser_selectio n)	7	Specifies whether scan command applies to High Energy (0) or Low Energy Laser (1)	2	SignedLSB2	n/a	0:HELT 1:LELT	n/a		Each return
Scan Pattern	8					0: Raster			
(scan_mode)		Selected Scan Pattern.	2	SignedLSB2	n/a	1: Linear	n/a		Each return
· – /						2: Fixed			
	9					0: valid return			
						1: valid return with overflow			
						2: no return			
		Status of return. Supplemented with				3: missing sample			
Flag Status		additional information from the OLA state of	2	SignedLSB2	n/a	100: valid, demodulator on			Each return
(flag_status)		health; indicating whether or not demodulator was on at the time of return.	_	Olgriod2002	170	101: valid return with overflow, demodulator on			Ladificialif
		and time of rotain.				102: no return, demodulator on			
						103: missing sample, demodulator on			
Range	10	Range in millimeters.	8	IEEE754LSBD ouble	mm		n/a	1mm	Each return
(range)				ouble					

Field	Field	Description	Size	Data Type	Units	Range	Def	Resolution	Frequency
(table field name)	Number		(Bytes)				ault		
Azimuth	11	Azimuth in milliradians.	8	IEEE754LSBD	mrad		n/a	0.05mrad	Each return
(azimuth)				ouble					
Elevation	12	Elevation in	8	IEEE754LSBD	mrad		n/a	0.05mrad	Each return
(elevation)		milliradians.		ouble					
Intensity T0	13	Intensity of outgoing	8	IEEE754LSBD			n/a		Each return
(intensity_t0)		pulse.		ouble					
Intensity TRR	14	Intensity of received	8	IEEE754LSBD			n/a		Each return
(intensity_trr)		pulse.		ouble					
X	15	X position of lidar	8	IEEE754LSBD	meters		n/a		Each return
(x)		point.		ouble					
Υ	16	Y position of lidar	8	IEEE754LSBD	meters		n/a		Each return
(y)		point.		ouble					
Z(z)	17	Z position of lidar point.	8	IEEE754LSBD ouble	meters		n/a		Each return
ELongitude	18	East longitude of lidar	8	IEEE754LSBD	deg		n/a		Each return
(elongitude)		point.		ouble					
Latitude	19	Latitude of lidar point.	8	IEEE754LSBD	deg		n/a		Each return
(latitude)				ouble					
Radius	20	Radius of lidar point.	8	IEEE754LSBD	km		n/a		Each return
(radius)				ouble					
SCX	21	X position of	8	IEEE754LSBD	meters		n/a		Each return
(scx)		spacecraft.		ouble					
SCY	22	Y position of spacecraft.	8	IEEE754LSBD ouble	meters		n/a		Each return

Field (table field name)	Field Number	Description	Size (Bytes)	Data Type	Units	Range	Def ault	Resolution	Frequency
(scy)									
SCZ	23	Z position of	8	IEEE754LSBD	meters		n/a		Each return
(scz)		spacecraft.		ouble					

5.2.6 OLA L2A Science

OLA Science Level 2A data product (OLA L2A) contains all the information in OLA L2 except that the original body-fixed point cloud data and s/c position data has been adjusted to minimize differences between individual OLA scans. The Altimetry Team has chosen to use the data processing level 2A (L2A) designation rather than level 3 to describe these data products because of their close association with the L2 products. These data produced the final derived altimetry global and local digital models generated during the OSIRIS-REx mission. Therefore, the OLA L2A data has been corrected. Here data is stored in calibrated physical units (i.e., ranges in millimeters and scan angles in degrees or milliradians as opposed to voltages and digital numbers). One data record is available for each OLA shot fired. The table below provides the type and size of each parameter. The OLA L2A and OLA L2 products possess identical formats, except that several additional flag statuses are available. A flag status of 4 found in the OLA L2A files means that OLA measured a valid return but that the return is thought to be a particle ejected from Bennu. A flag of 6 is identified as valid data suitable for assessing relative surface albedo when emission angles and range limits are within suitable limits. Generally, L2s are selected for inclusion in L2A calculation with flag values of 0, 1, 6, 100, 101, or 106.

The value of the intensity in the original L2 (Section 5.2.5) was converted to relative reflectance by using 14.364/(14.728-0.0008*(id-4000)) * Range^2. The constants in the formulation were derived by assessing the signal to noise characteristics of OLA during the mission (Neumann et al., 2020).

The OLA team has delivered L2A products for two different shape models. The first set are early mission L2As calculated relative to shape model V20. These files can be found in the data_calibrated_l2a_v20 collection. The L2As calculated relative to shape model V20 used the version 1 OLA L2s, i.e. without the scan mirror correction. Unfortunately, the filenames of the V20 L2As imply that they are calculated using the scan mirror corrected L2s, e.g. 20190701_ola_scil2Aid04000_v002.dat. The second set of L2As can be found in data_calibrated_l2a_v21 collection. These products are final mission L2As and are calculated with the scan mirror corrected L2s.

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
	Number		(Bytes)						
MET	1	Spacecraft clock time	18	ASCII_String	s/c ticks		n/a		Each return
MET Offset	2	Value in units of ticks (2^-16 seconds) that should be added to MET to give precise MET.	8	IEEE754LSBDouble	s/c ticks		n/a		Each return
UTC	3	UTC Time (yyyy- doyThh:mm:ss.ssssss)	24	ASCII_Time	n/a		n/a		Each return
ET	4	Ephemeris time	8	IEEE754LSBDouble	second				Each return
Scan OLA Time	5	Ola Time tag for this scan record.	8	IEEE754LSBDouble	second		n/a		Each return
Power Cycle	6	Power Cycle counter. Incremented by 1 for every POST.	2	SignedLSB2	n/a		n/a		Each return
Laser Selection	7	Specifies whether scan command applies to High Energy or Low Energy Laser	2	SignedLSB2	n/a	0:HELT 1:LELT	n/a		Each return
Scan Pattern	8	Selected Scan Pattern.	2	SignedLSB2	n/a	0: Raster 1:Linear 3: Fixed	n/a		Each return
Flag Status	9	Status of return.	2	SignedLSB2	n/a	0: valid return 1: valid return with overflow 2: no return 3: missing sample			Each return

Field	Field	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
	Number		(Bytes)						
						4: possible particle			
						5: scan edge or scan start			
						6: valid with albedo update			
						7: not used in any strip adjustmen t			
						100-107: same as above except demodulat or on			
Range	10	Range in millimeters.	8	IEEE754LSBDouble	mm		n/a	1mm	Each return
Azimuth	11	Azimuth in milliradians.	8	IEEE754LSBDouble	mrad		n/a	0.05mrad	Each return
Elevation	12	Elevation in milliradians.	8	IEEE754LSBDouble	mrad		n/a	0.05mrad	Each return
Intensity T0	13	Intensity of outgoing pulse.	8	IEEE754LSBDouble			n/a		Each return
Intensity TRR	14	Intensity of received pulse.	8	IEEE754LSBDouble			n/a		Each return
X	15	X position of lidar point.	8	IEEE754LSBDouble	meters		n/a		Each return

Field	Field Number	Description	Size	Data Type	Units	Range	Default	Resolution	Frequency
	Number		(Bytes)						
Y	16	Y position of lidar point.	8	IEEE754LSBDouble	meters		n/a		Each return
Z	17	Z position of lidar point.	8	IEEE754LSBDouble	meters		n/a		Each return
ELongitude	18	East longitude of lidar point.	8	IEEE754LSBDouble	deg		n/a		Each return
Latitude	19	Latitude of lidar point.	8	IEEE754LSBDouble	deg		n/a		Each return
Radius	20	Radius of lidar point.	8	IEEE754LSBDouble	km		n/a		Each return
SCX	21	X position of spacecraft.	8	IEEE754LSBDouble	meters		n/a		Each return
SCY	22	Y position of spacecraft.	8	IEEE754LSBDouble	meters		n/a		Each return
SCZ	23	Z position of spacecraft.	8	IEEE754LSBDouble	meters		n/a		Each return

5.3 Label and Header Descriptions

All OLA science and SoH data products contain date and time information that can be used to sort and correlate data products.

Data product labels are in XML format and are PDS4 compliant.

6 Applicable Software

6.1 Utility Programs

At the current time, the OSIRIS-REX project has no plans to release any mission specific utility programs.

6.2 Applicable PDS Software Tools

Data products found in the OSIRIS-REx archive can be viewed with any PDS4 compatible software utility. OSIRIS-REx image data and portions of the spectrometer data are formatted as FITS data files, which can be read by any FITS compatible viewer or library function.

6.3 Software Distribution and Update Procedures

As no OSIRIS-REx specific software will be released to the public, this section is not applicable.

7 Appendices

7.1 Acronyms

Phrase/Acronym	Description	
CODMAC	Committee on Data Management and Computation	
CPU	Central Processing Unit	
DRM	Design Reference Mission	
DSN	Deep Space Network	
FITS	Flexible Image Transport System	
GMT	Greenwich Mean Time	
HELT	High-Energy Laser Transmitter	
IAU	International Astronomical Union	
ID	Identification	
L2A	OLA Science Level 2A data product	
LELT	Low-Energy Laser Transmitter	
LIDAR	Light Detection and Ranging	
MDA	MacDonald, Dettwiler and Associates	
MET	Mission Elapsed Time	
NAIF	Navigation and Ancillary Information Facility	
NASA	National Aeronautics and Space Administration	
OLA	OSIRIS-REx Laser Altimeter	
OSIRIS-REx	Origins, Spectral Interpretation, Resource Identification, Security and Regolith Explorer	
PDS	Planetary Data System	
SCLK	Spacecraft Clock Time	
SIS	Software Interface Specification	
SOEST	University of Hawaii's School of Ocean and Oceanography	
SoH/SOH	State of Health	
SPICE NASA's ancillary space information system which is comprised of kernels (SPICE comes from Spacecraft ephemeris (SPK), Physical constants kernels (PCK),		

Phrase/Acronym	Description	
	Instrument kernels (IK), Pointing kernel (CK), and Events kernel (EK))	
SPK kernel	NAIF Ephemeris SPICE kernel	
SPOC	Science Processing and Operations Center	
TAG	Touch And Go	
UTC	Coordinated Universal Time	
XML	Extensible Markup Language	

7.2 Definitions of Data Processing Levels

OSIRIS- REx	NASA	CODMAC	Description
	Packet data	Raw - Level 1	Telemetry data stream as received at the ground station, with science and engineering data embedded.
Level 0 - Raw	Level 0	Edited - Level 2	Instrument science data (e.g., raw voltages, counts) at full resolution, time ordered, with duplicates and transmission errors removed.
Level 1- Uncalibrated	Level 1A	Calibrated - Level	NASA Level 0 data that have been located in space and may have been transformed (e.g., calibrated, rearranged) in a reversible manner and packaged with needed ancillary and auxiliary data (e.g., radiances with the calibration equations applied).
Level 2 - Calibrated	Level 1B	Resampled - Level	Irreversibly transformed (e.g., resampled, remapped, calibrated) values of the instrument measurements (e.g., radiances, magnetic field strength).
Level 3 - Processed	Level 1C	Derived - Level 5	NASA Level 1A or 1B data that have been resampled and mapped onto uniform space-time grids. The data are calibrated (i.e., radiometrically corrected) and may have additional

			corrections applied (e.g., terrain correction).
Level 4 - Derived	Level 2	Derived - Level 5	Geophysical parameters, generally derived from Level 1 data, and located in space and time commensurate with instrument location, pointing, and sampling.
Level 4 - Derived	Level 3	Derived - Level 5	Geophysical parameters mapped onto uniform space-time grids.

Level	Definition		
Low-Level Products	Any data product assigned to OSIRIS-REx Level 0 through Level 2		
	OREx Level 0	Telemetry. Raw instrument data reconstructed from telemetry with header and ancillary information appended. Appended header and ancillary data is data necessary for further processing.	
	OREx Level 1	Reversibly calibrated. Data in units proportional to physical units. Since PDS allows offsets and scaling factors in its array and table structures, this would be the minimum level capable of satisfying the "in physical units" requirement. This data will be archived to the PDS	
	OREx Level 2	Processed. Same as level 1 but contains additional fields that are calculated using SPICE kernel files. This data will be archived to the PDS	

7.3 Example PDS Label

Example labels can be found in the OLA bundle document collection in a sub-directory named "example labels". There are example labels for each type of OLA data product.

7.4 Reference

Neumann, G.A. et al., Global and Local Variations in 1064-nm Normal Albedo of Bennu from the OSIRIS-REx Laser Altimeter. *LPI* ..., (2326), p.2032.

7.5 OLA PDS Calibration File Parse

Python parser (https://github.com/michaelaye/ola_calib) for calibration file of OSIRIS-REX OLA instrument written by K.-Michael Aye during the review of the OLA products. This parser is included for the convenience of the end-user.

Instructions:

Locate the calibration file (potential file name: ola_cal_file.txt) for the OLA calibration and put it next to this Python module (ola cal.py)

Use as indicated in the notebook, use object inspection for all the things stored in the cal object.

```
import numpy as np
class OLA CAL READER:
    def __init_ (self, fname):
        self.fname = fname
        self.read lines()
        self.get indices()
        self.parse range coeffs()
        self.parse az el coeffs()
        self.parse rest()
    def read lines(self):
        data = []
        with open(self.fname) as f:
            for line in f:
                line = line.strip()
                if line.startswith('#') or len(line) == 0:
                    continue
                data.append(line)
        self.data = data
    def get indices (self):
        indices = []
        for i, line in enumerate (self.data):
            if line.split()[0].isupper():
                indices.append(i)
        self.indices = indices
    def parse group to array(self, index):
        group = self.data[self.indices[index] +
1:self.indices[index + 1]]
                              65
```

```
bucket = []
        for line in group:
bucket.extend(np.array(line.strip('\\').split(),
dtype='float'))
        return np.array(bucket)
    def parse range coeffs(self):
        self.RANGE HELT FIXED =
float(self.data[0].split()[1])
        self.RANGE HELT LUT = self.parse group to array(0)
        self.RANGE LELT FIXED =
float(self.data[self.indices[1]].split()[1])
        self.RANGE LELT LUT = self.parse group to array(1)
    def parse az el coeffs(self):
        self.AZIMUTH HELT = self.parse group to array(2)
        self.AZIMUTH LELT = self.parse group to array(3)
        self.ELEVATION HELT = self.parse group to array(4)
        self.ELEVATION LELT = self.parse group to array(5)
    def parse rest(self):
        for index in self.indices[6:]:
            tokens = self.data[index].split()
            setattr(self, tokens[0], np.array(tokens[1:],
dtype='float'))
Example notebook (example.ipynb)
 "cells": [
   "cell type": "code",
   "execution count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ola calib import OLA CAL READER"
   1
  },
   "cell type": "code",
   "execution count": 2,
   "metadata": {},
                              66
```

```
"outputs": [],
   "source": [
   "cal = OLA CAL READER(\"./ola cal file.txt\")"
  },
   "cell type": "code",
   "execution count": 4,
   "metadata": {},
   "outputs": [
     "data": {
      "text/plain": [
      "array([-0.01234098, 1.01449806, -0.03878473,
0.03512159, -0.00218885, \n",
                0.03002791, -0.8554585, 0.03818734,
0.07648011, -0.14134251,\n",
               -0.40992896, -0.13666116, 0.94534425, -
0.52998789, -1.65820117])"
      1
     },
     "execution count": 4,
     "metadata": {},
     "output type": "execute result"
    }
   ],
   "source": [
   "cal.AZIMUTH HELT"
  } ,
   "cell type": "code",
   "execution count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
      "array([0. , 0.001, 0. , 0. , 0. , 0. ])"
      ]
     },
     "execution count": 5,
     "metadata": {},
     "output type": "execute result"
    }
```

```
],
   "source": [
   "cal.ADC BIAS NEG REF VOLTAGE"
  },
   "cell type": "code",
   "execution count": 6,
   "metadata": {},
   "outputs": [
     "data": {
      "text/plain": [
       "array([-1.73277685e-02, 1.98466594e-02,
1.03549939e+00, -2.93306954e-03,\n",
               -1.53076409e-02, -2.30560149e-01, -
1.72898594e-02, -3.20868689e-01,\n",
               -6.79769957e-02, -1.74335480e+00, -
3.30069325e-02, 4.59325863e-01,\n",
                2.51398211e-01, -1.25332528e+00,
5.38166676e+00])"
      1
     },
     "execution count": 6,
     "metadata": {},
     "output type": "execute result"
    }
   ],
   "source": [
    "cal.ELEVATION HELT"
   1
  } ,
   "cell type": "code",
   "execution count": 9,
   "metadata": {},
   "outputs": [
     "data": {
      "text/plain": [
      "array([-25.168553, -25.180376, -25.191883, ...,
46.996854, 46.996959,\n",
                46.9970641)"
      ]
     },
```

```
"execution count": 9,
    "metadata": {},
    "output_type": "execute result"
 ],
  "source": [
  "cal.RANGE HELT LUT"
 },
  "cell type": "code",
  "execution count": null,
  "metadata": {},
  "outputs": [],
  "source": []
 }
],
"metadata": {
"kernelspec": {
  "display name": "Python [conda env:py37] *",
  "language": "python",
  "name": "conda-env-py37-py"
 } ,
 "language info": {
  "codemirror mode": {
   "name": "ipython",
  "version": 3
  },
  "file extension": ".py",
  "mimetype": "text/x-python",
  "name": "python",
  "nbconvert exporter": "python",
  "pygments lexer": "ipython3",
  "version": "3.7.3"
 } ,
 "widgets": {
  "application/vnd.jupyter.widget-state+json": {
  "state": {},
   "version major": 2,
   "version minor": 0
  }
 }
},
"nbformat": 4,
"nbformat minor": 4
```

}