UA-SIS-9.4.4-322 Effective Date: 04/24/2019 Revision – 6.0 RELEASED

Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) Project

OSIRIS-REx Touch-and-Go Camera Suite (TAGCAMS) Data Product Software Interface Specification

UA-SIS-9.4.4-322, Rev_6.0

Revision - 6.0

04/24/2019

CM FOREWORD

This document is an OSIRIS-REx Project controlled document. Changes to this document require prior approval of the OSIRIS-REx Configuration Control Board (CCB) and Configuration Management Lead (CML). Proposed changes shall be submitted to the OSIRIS-REx Project CML, along with supportive material justifying the proposed change.

Questions or comments concerning this document should be addressed to:

SPOC Configuration Management Team 1415 N. 6th Avenue Tucson, AZ 85705

Email: spoc-cm@orex.lpl.arizona.edu

UA-SIS-9.4.4-322, Rev. 6.0 RELEASED

OSIRIS-REx Project TAGCAMS Data Product SIS

Prepared By:

M. Katherine Crombie M. Katherine Crombie 2019.04.25 10:39:02 -07'00' M. Katherine Crombie Date **OSIRIS-REx PDS Lead** Approved By: Heather Enos 2019.04.29 15:44:38 -07'00' Heather Enos Date **OSIRIS-REx Deputy Principal Investigator Brent Bos** Brent Bos 2019.04.25 10:40:01 -07'00' Brent Bos Date **TAGCAMS Instrument Scientist** Michael Moreau 2019.04.25 10:39:34 -07'00' Michael Moreau Date **OSIRIS-REx Flight Dynamics Lead** Coralie Adam ^{Coralie Adam} 2019.04.29 14:42:51 -07'00' Coralie Adam Date **OSIRIS-REx Flight Dynamics** Karl Harshman Karl Harshman 2019.04.25 10:40:33 -07'00' Karl Harshman Date **OSIRIS-REx SPOC Manager** Sanford Selznick Sanford Selznick 2019.04.26 13:26:36 -07'00' Sanford Selznick Date **OSIRIS-REx Science Processing Lead**

RELEASED

Rev/	Description of Change	APPROVED	DATE DRAFT	DATE	VERSION
Version		BY	ISSUED	REVIEW	RELEASE
Level		DI		COMPLETED	DATE
			(MM/DD/YYYY)	(MM/DD/YYYY)	(MM/DD/YYYY)
1.1	Initial Release				06/08/2015
2.0	Update Status Packet values				11/04/2015
	from Last Opcode to DVR				
	+5V from 8-bit to 32-bit to				
	correct error in Version 1.0				
	SIS Clarify description of L1				
	Status data product				
	Add Status L1 data product				
	specification				
	Make data format				
	descriptions consistent with				
	TAGCAMS Users Guide				
	4/9/2015				
	In Image Format, break				
	ATT_QUAT keyword into				
	4 keywords, break				
	ATT_RATE keyword into				
	3 keywords				
	Table 2. Insert row for				
	Instrument Alignment and				
	Calibrations				
	Updated signature page				
	Updated data formats				
	descriptions consistent with				
	TAGCAMS Users Guide				
	July1, 2105				
	Added MID-OBS,				
	DELTAOBS, INST_QA, INST_QX, INST_QY,				
	INST_QZ, RADESYS,				
	EQUINOX, CKQUAL,				
	MISSPACK, CHCKSUM				
	keywords to image header				
	Removed TARGET,				
	MPHASE, ACTIVITY,				
	ATLTGTID, SCISEQID,				
	DESCRIPT, OBJECT,				
	OBJECTRA,				
	OBJECTDEC,				
	COORDSYS, LAT, and				
	LONG keywords from the				
	image FITS header				
	information.				

DOCUMENT CHANGE LOG

Rev/ Version Level	Description of Change	APPROVED BY	DATE DRAFT ISSUED (MM/DD/YYYY)	DATE REVIEW COMPLETED (MM/DD/YYYY)	VERSION RELEASE DATE (MM/DD/YYYY)
	Changed spacecraft quaternion keywords in the image FITS header from SC_Q0, SC_Q1, SC_Q2, SC_Q3 to SC_QA, SC_QX, SC_QY, SC_QZ Change ET time to be mid- observation time instead of start-observation time in the image FITS header Update section 4.3.2 to update OPNAV image delivery method to the FOB Removed reference to PDS Label Example Update INSTRU keyword to INSTRUME (FITS Standard)				
2.1	Update per ECR-0047	ECR-0047			08/10/2016
2.2	Update per ECR-0061 Updated D-PI from Ed Beshore to Heather Enos Removed Ground Segment Manager signature	ECR-0061			11/15/2016
3.0	Update per ECRs and changes from 2.n update cycle				03/09/2017
4.0	Úpdate per CR-144	CR-144			05/03/2018
5.0	Update per CR-323	CR-323			10/23/2018
6.0	Update per CR-429	CR-429	04/19/2019	04/24/2019	04/24/2019

	LIST OF TBDs/TDRs	
SECTION ID	DESCRIPTION OF TBD/TBR	DATE OF RESOLUTION
2	OSIRIS-REx Archive Volume SIS (Deprecated	
	document, removed from applicable documents)	
4.4.3	Coordinate System Document Reference	9/1/2015
7.5	PDS Label Examples (to be completed after Version 1.2	9/1/2015
	is signed)	
	Removed this document section 9/1/2015	
4.3.3	Table 4. Data Volume – to be updated with latest rev of the DRM	
4.2	Rate of status packet data collections	6/5/2015

TABLE OF CONTENTS

1	Purpo	ose and Scope	9
2	Appl	icable Documents and Constraints	9
3	Relat	ionship with Other Interfaces	10
4	Data	Product Characteristics and Environment	10
	4.1	Instrument Overview	10
	4.1.1	Observational Profile and Data Acquisition	11
	4.2	Data Product Overview	11
	4.3	Data Processing	12
	4.3.1	Data Processing Level	12
	4.3.2	Data Product Generation	13
	4.	3.2.1 L0 and L1 Processing	13
	4.3.3	Data Flow	14
	4.3.4	Labeling and Identification	15
	4.4	Standards Used in Generating Data Products	16
	4.4.1	PDS Standards	16
	4.4.2	Time Standards	17
	4.4.3	Coordinate Systems	17
	4.4.4	Data Storage Conventions	18
	4.5	Data Validation	18
5	Detai	led Data Product Specification	18
	5.1	Data Product Structure and Organization	18
	5.2	Data Format Descriptions	19
	5.2.1	Images	19
	5.2.2	L0 Status Data Product	30
	5.2.3	L1 Status Data Product	33
	5.3	Label and Header Description	35
6	Appl	icable Software	35
	6.1	Utility Programs	35
	6.2	Applicable PDS Software Tools	35
	6.3	Software Distribution and Update Procedure	35
7	Appe	ndices	36
	7.1	Definitions of Data Processing Levels	36
	7.2	Example PDS Labels	37

10
11
13
14
15
15
20
31
36

1 Purpose and Scope

The data products described by this Software Interface Specification (SIS) are the OSIRIS-REx Touch-and-Go Camera Suite (TAGCAMS) raw and uncalibrated data products. TAGCAMS consists of three similar camera heads: NavCam 1, NavCam 2 and StowCam, each suited for a particular purpose. NavCam 1 is the primary Navigation Camera (NavCam) and is a wide-angle framing camera used for optical navigation. NavCam 2 is the primary Natural Feature Tracking Camera (NFTCam) used for landmark identification and autonomous feature tracking to aid in sample acquisition. Finally, the Stowage Camera (StowCam) is used to document the insertion of the sample collection head into the Sample Return Capsule (SRC). The OSIRIS-REx Science Processing and Operation Center located at the University of Arizona produces these data products and distributes them to the OSIRIS-REx Flight Dynamics Team, the Lockheed Martin Mission Support Area, the Science Team and the Planetary Data System. The purpose of this document is to provide users of these data products with detailed descriptions of the products and how they were generated, including data sources and destinations. The document is intended to provide enough information to enable users to read and understand the data products. The users for whom this document is intended are the flight dynamicists and mission operations personnel who will use the data, and the scientists who will analyze the data, including those associated with the project and those in the general planetary science community.

2 Applicable Documents and Constraints

This Data Product SIS is consistent with the following Planetary Data System Documents:

- 1. Planetary Data System Standards Reference, Version 1.7.0, September 15, 2016.
- 2. PDS4 Data Dictionary Abridged Version 1.7.0.0, September 28, 2016.
- 3. PDS4 Information Model Specification, V.1.7.0.0, September 28, 2016.

This Data Product SIS is responsive to the following OSIRIS-REx documents:

- 4. OSIRIS-REx Science Data Management Plan, UA-PLN-9.4.4-004, Rev 4.0, May 26, 2016.
- OSIRIS-REx Science Processing and Operations Center and Planetary Data System Small Bodies Node Interface Control Document, UA-ICD-9.4.4-101, Rev 1.0, October 2013.
- 6. OSIRIS-REx Mission Support Area and Science Processing and Operations Center Interface Control Document, NFP3-PN-12-OPS-6A.
- 7. OIA_ORX_092, OPNAV Images (NavCam and OCAMS), April 7, 2015.
- OSIRIS-REX TAGCAMS Users Guide, MSSS-TAG-REQ-4401, August 18, 2016.

- 9. OSIRIS-REx Science Processing and Operations Center and Flight Dynamics Interface Control Document UA-ICD-9.0.0-100, Rev 3.0, June 1, 2016.
- 10. OSIRIS-REx Coordinate System for Bennu, Version 2.0, January 14, 2016.

Finally, this SIS is meant to be consistent with the contract negotiated between the OSIRIS-REx Project and the Science Processing and Operations Center.

3 Relationship with Other Interfaces

Changes to the data products described in this SIS effect the following software, products or documents:

Name	Туре	Owner
SPOC Database Schema	Product	SPOC
NavCam Image Data	Product	SPOC
NFTCam Image Data	Product	SPOC
STOWCam Image Data	Product	SPOC
TAGCAMS Raw Status	Product	SPOC
Data		
TAGCAMS Processed	Product	SPOC
Status Data		
SPOC Archive Packager	Software	SPOC
MSA-SPOC ICD	Document	MSA
SPOC-FDS ICD	Document	SPOC
OSIRIS-REx Science Data	Document	Project
Management Plan		_

Table 1 - Interface Relationships

4 Data Product Characteristics and Environment

4.1 Instrument Overview

The OSIRIS-REx Touch-and-Go Camera Suite (TAGCAMS) is a framing imaging system to be used for navigation and engineering support imaging on the OSIRIS-REx asteroid sample return spacecraft. The instrument is provided by Malin Space Science Systems (MSSS) and is a configuration of the MSSS commercial ECAM system with custom software and optics. The instrument consists of two redundant DVR4s, each with a single M50 navigation camera head, NavCam and NFTCam respectively. The DVR with the NFTCam also has a C50 camera head (StowCam) for viewing sample stowage. Supplemental information about the generic specifications of the camera system can be found at http://www.msss.com/space-cameras/.

4.1.1 Observational Profile and Data Acquisition

Each instrument aboard OSIRIS-REx has specific scientific/engineering objectives in support of the overall mission objective of collecting and returning to Earth a pristine sample of the asteroid Bennu. Instrument specific observation campaigns have been outlined for each phase of the mission to support sample site selection and overall Bennu characterization. The TAGCAMS observation profile is as follows:

Mission Phase	Observation Campaign Description
Outbound Cruise	
	Instrument Health Check (All)
	Operational Performance (All)
	Instrument Alignment and Calibrations (All)
	Earth-Moon Flyby Observations (NavCam)
Approach	
	Optical Navigation Imaging (NavCam)
Preliminary Survey	
	Optical Navigation Imaging (NavCam)
Orbit A (1.5km)	
	Optical Navigation Imaging (NavCam)
	Instrument Alignments and Calibrations (All)
Detailed Survey	
	Optical Navigation Imaging (NavCam)
Orbital B (1.0km)	
	Optical Navigation Imaging (NavCam)
	Radio Science Gravity Field Monitoring (NavCam)
	Instrument Alignments and Calibrations (All)
Reconnaissance	
	Optical Navigation Imaging (NavCam)
TAG-Rehearsal	
	Optical Navigation Imaging (NavCam)
	Natural Feature Tracking (NFTCam)
Sample Collection	
	Optical Navigation Imaging (NavCam)
	Natural Feature Tracking (NFTCam)
	Sample Stow imaging (STOWCam)

Table 2 - NavCam Observation Profile

4.2 Data Product Overview

This SIS describes image and instrument status (engineering) data acquired by TAGCAMS. Primary Optical Navigation and Natural Feature Tracking Images are stored as binary Flexible Image Transport System (FITS) files. STOWCam and other images are stored as JPEGs. Engineering Status data are stored as a single binary table file per day. Status records are acquired every 120 (default) seconds. The default value is expected to be updated in-flight to support more frequent aliveness checking. A value of 5 seconds may be more typical. The data products described by this SIS are:

- 1. TAGCAMS Raw Images These images are reconstructed science packet telemetry with immediately received associated timing and spatial information in a FITS format. These images are found in the data_raw collection.
- 2. TAGCAMS JPEG Images These images are the natively downlinked data primarily from the StowCam that are used to record the stowage of the

sampler head in the sample return capsule. It is possible that NavCam or NFTCam images may be downlinked as JPEGs, however these images would not be used for Optical Navigation or Natural Feature Tracking purposes and would be archived at the conclusion of the mission as supplemental information. The comment section of SPOC generated JPEG images contains the same information that is normally found in FITS image headers. Should we have any of these images to archive, they would be found in the data supplemental collection.

- 3. TAGCAMS Raw Status Raw DN value of 48 channels of camera status information. These products are found in the data hkl0 collection.
- 4. TAGCAMS Processed Status –Processed (DN to engineering unit) status information in physical units. These products are found in the data_hkl1 collection.

4.3 Data Processing

All OSIRIS-REx mission science data processing is performed at the University of Arizona Science Processing and Operations Center (SPOC). In addition to science processing, the SPOC stores and processes spacecraft engineering camera suite (TAGCAMS) images to standard outputs for further processing by the engineering and science team.

TAGCAMS image and status telemetry are received by the SPOC via the Lockheed Martin Mission Support Area (MSA) and the DSN. TAGCAMS data are reconstructed from telemetry frames (packets) and stored in the SPOC data repository as raw data (OREx Level 0). Level 0 raw status data are then processed to convert digital number values to engineering units resulting in the L1 processed status data product. This product is also stored in the SPOC data repository.

Raw image data are approximately 10.772MB in size. Immediately received spacecraft orientation information (SPICE S/C C-kernels) taken concurrently with the imagery is processed to provide timing and attitude data that is attached to the raw images. Status data are acquired nominally once every 120 seconds (although may be taken more frequently) and are packaged into a single data file per day. Status file size dependent on the number of reading taken per day, but with nominal settings is on the order of 39Kb for both the L0 raw and L1 processed products.

4.3.1 Data Processing Level

Table 3 shows the OSIRIS-REx data processing levels of all science data products described by this SIS. Correlation to NASA and CODMAC data processing levels and definitions can be found in Appendix 7.1. Calibration file data processing levels are not discussed, as calibration files require special production techniques.

Data Product	NASA Product Level	OSIRIS- REx Data Processing Level	Description
TAGCAMS Raw FITS Images	Level-0	LO	Reconstructed Telemetry with associated timing and attitude information
TAGCAMS JPEG Images	Level-0	LO	Reconstructed Telemetry with associated timing and attitude information
TAGCAMS Raw Status Binary Table Data	Level-0	LO	Reconstructed telemetry with engineering DN values
TAGCAMS Processed Status Binary Table Data	Level-1	L1	DN engineering values converted to physical units

Table 3 - TAGCAMS Data Processing Levels

4.3.2 Data Product Generation

As mentioned previously, all OSIRIS-REx science data processing is completed at the SPOC located at the University of Arizona. The decision was made early in the mission lifecycle, that all processing would be centralized to facilitate the relatively quick turnaround needed by the science and operations teams to make tactical decisions about sample site selection. NavCam and NFTCam images will also be processed by the SPOC and made available to FDS and the MSA through the Flight Operations Bucket (FOB) that uses e-mail to notify interested users. FDS and MSA may also use the OSIRIS-REx WebQuery Tool to identify and access NavCam, NFTCam and STOWCam image and status records of interest from the SPOC data repository. Raw NavCam images will be available to FDS within 30 minutes of receipt of the images by the SPOC.

4.3.2.1 LO and L1 Processing

TAGCAMS image and status telemetry are received from the DSN and passed through the LM MSA Front End Data System (FEDS) to the SPOC FEDS. The SPOC ingests, sorts, reconstructs, decompresses (if necessary) and stores telemetry data as raw observational data that includes observations, timing, spatial and spacecraft attitude information. Timing, spatial and spacecraft attitude information are attached to image headers using spacecraft pointing information (quaternions) that has been received from the spacecraft just prior to receipt of image telemetry. This information is in the form of a SPICE C-kernel that is produced at the Navigational and Ancillary Information Facility (NAIF) and made available to the SPOC via the Flight Operations Bucket (FOB). Spacecraft attitude information is also received in the NavCam and NFTCam telemetry via a 72-byte attitude header attached to images. The C-kernel, attitude header and other timing information is processed by the SPOC to yield the timing, spatial and ancillary information to be attached to the Level 0 raw image headers. A list of all image header values can be found in Section 5.2. Complete image files are sent from the SPOC to the FOB, and interested users are notified by e-mail that images are available

STOWCam images may be received from the spacecraft via telemetry in a JPEG format. These images are received and stored at the SPOC in the same way as the NavCam or NFTCam data are received. The JPEG images will have timing and attitude data attached to the JPEG comment. The included meta-data will be identical to the meta-data provide in the NavCam and NFTCam FITS headers and PDS labels.

TAGCAMS Status data (housekeeping, hk) are processed through the SPOC to sort and record status records as DN values. The status DN values are then converted into physical units (temperatures, voltages, currents) according to instrument specific conversion polynomials (L0 raw to L1 processed processing). The converted values are then stored along with the original values in the SPOC data repository. Once stored in the SPOC data repository L0 and/or L1 status information can be written to files as specified in Section 5.

Once processing has been completed, images are uploaded to the FOB, and FDS and MSA are notified by e-mail that images are ready. Consumers may then also use the OSIRIS-REx WebQuery Tool to identify and download images or status products of interest. The entire process from receipt of image and attitude data from the MSA to e-mail notification takes less than 30 minutes.

4.3.3 Data Flow

Raw and processed data products are built up in sequential data processing steps addressing specific corrections or calibrations. All data products are built from raw telemetry ingested into the SPOC data repository system. The OSIRIS-REx Instrument, Operations, Flight Dynamics and Science Teams access the data repository through a query tool.

Table 4 shows the expected TAGCAMS data collection by camera and mission phase. The number of expected images is specified as well as the expected data volume of the processed data products. (Note: 1944 x 2592 pixels, at 16-bits per pixel plus header information equals 11.04 MB per image raw, raw data volume is currently calculated as this number times the number of images. Also note that the 11.04MB used for volume calculations is slightly larger than current data product size of 10.772MB, and therefore should be thought of as an upper bound)

Mission Phase	Launch	Cruise	Approach	Prelim Survey	Orbit A	Detailed Survey	Orbit B	Recon	TAG Rehearsal	Sample Collection
NavCam # Images	75	450	100	680	1054	1386	191	2210	924	308
NavCam Raw (MB)	828	4968	1104	7507	11636	15301	2109	24398	10201	3400

Mission Phase	Launch	Cruise	Approach	Prelim Survey	Orbit A	Detailed Survey	Orbit B	Recon	TAG Rehearsal	Sample Collection
NFTCam # Images	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	98	203
NFTCam Raw (MB)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1082	2241
STOWCam # Images	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	270
STOWCam Raw (MB)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2981
Status # of Observations	720	4320	67680	14400	22320	45360	43200	70560	30240	16560
Status (MB)	0.14	0.86	13.54	2.88	4.46	9.07	8.64	14.11	6.05	3.31

RELEASED

It is possible that more than one version of the Raw or Processed data products maybe produced. This is not intended to be routine but may occur if one or more calibration files needs to be updated. Any changes to the data processing pipeline are configuration controlled and follow the standard OSIRIS-REx configuration control process. Reprocessed images are identified in the filename (see Section 4.3.4) and are noted as to why re-processing was necessary.

4.3.4 Labeling and Identification

OSIRIS-REx science data products are named according to the OSIRIS-REx Naming Conventions Document (UA-HBK-9.4.4-905). The following paragraphs are excerpts of this document that describe how NAVCAM image and housekeeping files are named. The generalized file naming convention is:

UTC Time(21) + "_" + Instrument(3) + "_" + Product Type + "." + PDS Type

The UTC time is the time of data acquisition derived from the spacecraft clock time.

The instrument is one of the following:

 Table 5 - Instrument Abbreviations

Instrument Name	Abbreviation
NavCam	ncm
NFTCam	nft
STOWCam	sto

The product type is:

 Table 6 - Data Product Type

Product Type	Definition
L0	Raw Image, reconstructed telemetry
L0J	JPEG Image, reconstructed telemetry

LOS	Raw Status Packet
L1S	Status Packet DNs converted to physical units

The PDS type file suffix indicates the type of file the data product is. TAGCAMS data products have one of three file type suffixes, .FITS for image files, .DAT for binary status tables or .JPG for JPEGS.

It should be noted that early data products delivered to the PDS may contain a version number after the product type. This is an internal version number and should be disregarded.

All TAGCAMS image and status files are created with detached PDS labels. The labels are PDS4 compliant XML format labels with the required sections for ARRAYs and TABLE_BASE.

Image data products contain headers. The header meta-data are identical for all TAGCAMS image types and contain information about when and how the image was acquired. Data processing status is also indicated in the header.

4.4 Standards Used in Generating Data Products

4.4.1 PDS Standards

All data products described in this SIS conform to PDS4 standards as described in the PDS Standards document noted in the Applicable Documents section of this SIS. Prior to public release, all data products will have passed both a data product format PDS peer review and a data product production pipeline PDS peer review to ensure compliance with applicable standards.

All data products are labeled with PDS4 compliant detached XML labels. These labels describe the content and format of the associated data product. Labels and products are associated by file name with the label having the same name as the data product except that the label file has a .xml extension.

Labels are constructed with the PDS4 Product Class, Product_Observational sub-class. The Product_Observational sub-class describes a set of information objects produced by an observing system. A hierarchical description of the contents of Product Observational products is:

Product Observational

Identification_Area - attributes that identify and name an object.

Logical_Identifier - name/location of file

Version_ID - version of product

Title - Descriptive name of product

Information_model_version - version of PDS4 information model used to create product Product_Class - attribute provides the name of the product class(Product_Observational) Modification History - attributes describing changes in data product

Observation_Area - attributes that provide information about the circumstances under which the data were collected.

Time_Coordinates - time attributes of data product Primary_Results_Summary - high-level description of the types of products included in the collection or bundle to facilitate data discovery Investigation_Area - mission, observing campaign or other coordinated, large-scale data collection attributes Observing_System - observing system (instrument) attributes Target_Identification - observation target attributes Mission_Area - mission specific attributes needed to describe data product File_Area_Observational - describes a file and one or more tagged_data_objects contained within the file.

File - identifies the file that contains one or more data objects Table Binary - defines a simple binary table.

Information in the preceding paragraphs was distilled from the PDS4 Information Model provided by PDS. Additional information on PDS4 product labels can be found by selecting "How to Approach a PDS4 Data Set" on the Small Bodies Node web site at <u>http://sbn.pds.nasa.gov</u>.

4.4.2 Time Standards

Time Standards used by the OSIRIS-REx mission conform to PDS time standards. The spacecraft clock (SCLK) reference is 1/1/2000 12:00:00 UTC, with a minimum range date from 1/1/2010 to 1/1/2030. Onboard time tagging is the standard 32-bit seconds and 16-bit subseconds. The spacecraft clock string reported in various data products contains the spacecraft clock partition at a number before a slash as well as the seconds dot subseconds, e.g. 3/0545586959.34560. It is possible that the seconds portion of the sclk string at the beginning of a science sequence may be noticeably small (seconds <100), this is due to data collections prior to an instrument - spacecraft clock time synchronization. All OSIRIS-REx data products contain both the spacecraft clock time of data acquisition and a conversion to UTC to facilitate comparison of data products. In the case of TAGCAMS spacecraft clock time is given at the start of the acquisition. TAGCAMS data also contain Ephemeris Time (ET) and Ground Receive Time (GRT) to facilitate processing.

4.4.3 Coordinate Systems

All coordinate systems used by the OSIRIS-REx mission conform to IAU standards. A complete discussion of the coordinate systems and how they are deployed in the mission can be found in the document "OSIRIS-REx Coordinate System Plan" (AP-10) archived in the OSIRIS-REx archive mission bundle documents collection. This document is consistent with the coordinate system plans found in other internal project documents:

- 1. PLA-OSIRIS-REx-SC-CDRL-0153, Coordinate Systems Definition Document
- 2. PLA-OSIRIS-REx-SPEC-0010, OSIRIS-REx Trajectory Standards Document

Internal project documents will not be archived but are included here as a reference for project personnel.

4.4.4 Data Storage Conventions

FITS data products are stored according to the FITS 3.0 Standard. Binary data products are stored as big-endian (MSB) binary. Data formats are explicitly described in Section 5 of the document.

4.5 Data Validation

The SPOC has a comprehensive Verification and Validation Plan for all software used at or developed by the SPOC. All software is configuration controlled and any changes made follow the SPOC Configuration Control Plan, which includes substantive testing of changes. During day-to-day production of L0 data products from telemetry, check sums and spot checks are used to validate that software is producing data products correctly.

In addition to software verification and validation, each OSIRIS-REx data product has been peer reviewed for both PDS data format acceptability and scientific usefulness. No changes are expected to data formats after peer review. The SPOC Configuration Control Plan governs any changes, should they be needed.

When data is prepared for submission to the PDS, the SPOC will use automated PDS / mission-provided validation tools for conformance to the PDS4 standards. Validation of the scientific data contained within the NavCam data products will be performed by OSIRIS-REx team members.

5 Detailed Data Product Specification

5.1 Data Product Structure and Organization

The OSIRIS-REx data archive is organized by instrument. The TAGCAMS portion of the archive is organized with collections for NavCam, NFTCam, StowCam, and Housekeeping (Status). Scientific image data is stored as a 2-part file with a detached PDS label. The detached PDS labels are PDS4 compliant XML label that describes the contents of the image file. See Appendix 7.5 for an example label. The 2-part FITS image file consists of:

- 1. A primary ASCII header of keyword-value pairs
- 2. A primary binary 2-d array (image)

StowCam data may be transmitted from the spacecraft as JPEG images. These images are archived as supplementary information in JPEG format with meta-data attached. A PDS4 compliant XML label that describes the contents of the image file. See Appendix 7.5 for an example label.

L0 and L1 Status Data are stored in the TAGCAMS DATA_HK_(L0/1) collections as binary tables with a detached PDD4 compliant XML label. The detached PDS labels describe the specific structure of the binary table. The binary tables contain 53 fields and have fixed-length records of 200 bytes. Status data is packaged as one Earth day's-worth of status records, with a nominal file size of 720 records per day. The number of records

RELEASED

is strictly dependent on the commanded rate of status packet acquisition, with a nominal rate of 1 packet every 120 seconds.

The TAGCAMS bundle directory structure is as follows: orex.tagcams

data hkl0 – raw level 0 status (housekeeping) cruise 1 ega cruise 2 approach preliminary survey orbital a, detailed survey orbital b reconnaissance rehearsal TAG (Touch-and-go) data hkl1 – reduced level 1 status (housekeeping) cruise 1 ega cruise 2 approach preliminary survey orbital a, detailed survey orbital b reconnaissance rehearsal TAG (Touch-and-go) data raw – level 0 raw image products cruise 1 ega cruise 2 approach preliminary survey orbital a, detailed survey orbital b reconnaissance rehearsal TAG (Touch-and-go) document - TAGCAMS documentation

5.2 Data Format Descriptions

5.2.1 Images

Optical Navigation and NFTCam image data are stored in FITS file formats with a single header and data unit (HDU). Header keywords are filled as data processing occurs either by the SPOC Ingest/Digest processing or by the SPOC Spatial Generation processing. The FITS image header that contains meta-data describing the conditions under which the image was taken is described in Table 7. The meta-data are also translated into the PDS4 XML label and appears in the Observation_Area Class. Descriptions of attributes in the

RELEASED

table below are either abbreviated or truncated in the product FITS files due to line length limitations in the FITS standards. For all image products sample refers to the fastest changing axis, and line refers to the second fastest changing axis.

Attribute Name	FITS Keyword	Units	Description
element_array.data_type	BITPIX		number of bits per data pixel (16 for L0, -32 for L1)
axes	NAXIS		number of data axes
axis_array.sequence_number	NAXIS1		length of data axis 1
axis_array.sequence_number	NAXIS2		length of data axis 2
n/a - FITS specific	EXTEND		FITS dataset may contain extensions
n/a - FITS specific	BZERO		offset data range to that of unsigned short
n/a - FITS specific	BSCALE		1= default scaling factor
investigation_area.name	MISSION		Mission: OSIRIS-REx
observing_system.name	HOSTNAME		Spacecraft hostnameInstrument: OSIRIS-RExNavigation Camera (orOCAMS or NFTCAM ifeither instrument is used forOPNAV purposes) ncm =NavCam, nft = NFTCAM,sto = STOWCAM, map=MapCam, pol= PolyCam,
observing_system_component.name	INSTRUME		sam = SamCam
n/a - FITS specific	ORIGIN		University of Arizona Science Processing and Operations Center
mission_area.apid mission area.ground receipt time	APID		Spacecraft Application Identification Number used to indicate the type of data packet received from the spacecraft. Ground Receive Time in coordinated universal time (YYYY-MM- DDThh:mm:ss.sss)
			Coordinated Universal Time file was created by SPOC (YYYY-MM-
mission_area.spoc_date	SPOCDATE		DDThh:mm:ss.sss)
mission_area.creator	CREATOR		SPOC GIT repository identifier that uniquely identifies code version used to create the data product. YYYY-MM-
mission_area.date_of_observation	DATE_OBS		DDThh:mm:ss.sss observation start, Timestamp (in coordinated universal

Table 7 - Data Format Descriptions: Image Attributes

			RELEASED
			time) from image acquisition,
			derived from the second and
			sub-second values. This is
			the timestamp at the start of
			the observation.
			Spacecraft mid-observation
			time (YYYY-MM-
			DDThh:mm:ss.sss) in
			coordinated universal time
			calculated by (DATE OBS +
mission area.mid obs	MIDOBS		.5*EXPTIME).
			Spacecraft Clock String at
			start of observation time.
			SCLK STR is formatted as
			clock
mission_area.sclk_string	SCLK_STR		partition/seconds.subseconds.
			Ephemeris Time (seconds
			past J2000 epoch, TDB -
			Barycentric Dynamical
			Time) at the mid-observation
mission_area.mid_obs_et	ET	Sec	time.
			Actual exposure time in
			seconds, derived from
mission_area.exposure	EXPTIME	Sec	commanded exposure time.
			Delta between mid-
			observation time and
			spacecraft clock string (Mid-
			observation time)
			(SCLK STR timestamp), in
			seconds used to verify
mission area.delta obs	DELTAOBS	Sec	exposure time.
			Spacecraft quaternion in
			$J_{2000}(q_0 = \cos(t/2))$
			obtained from the NAIF
			provided C kernel. SPICE
			convention conversion to 3x3
			matrix transforms vector in
			spacecraft frame to J2000
			frame. This value is
			calculated using the SPICE
			interface and numbers will be
			accurate to the accuracy of
			the SPICE kernels.
			Calculations will be based on
			the MIDOBS time. SPICE
reom acos	SC_QA		quaternion standard is that
geom.qcos	QA		Q0 is the scalar value.
			Spacecraft quaternion in J2000 ($q1 = sin(theta/2)$)
			J2000 (q1 = sin(theta/2)) obtained from the NAIF
			provided C kernel. SPICE
			convention conversion to $3x3$
			matrix transforms vector in
			spacecraft frame to J2000
			frame. This value is
			calculated using the SPICE
geom.qsin1	SC_QX		interface and numbers will be accurate to the accuracy of

geom.quin3 SC_QZ He SPICE Lemels. geom.quin3 SC_QZ He scalar value. geom.quin3 SC_QZ He SPICE Lemels. geom.quin3 SC_QZ He Solar value.			KELEASED
geom.qsin3 geom.qsin3 geom.qsin3 geom.qsin4			the SPICE kernels.
geom.qsin2 SC_QY Spacecrift quaternion in yaternion struke is spacecrift quaternion in spacecrift quate			
geom.qsin2 SC_QY Speecerif quaternion in J2000 (q2 = sintheta 2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3X, matrix transforms vector in spaceraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the accuracy of the SPICE kernels. Secont frame to J2000 (q3 = sintheta 2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the accuracy of the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the AIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q3 = sintheta 2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3X. matrix transforms vector in spaceraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3X. matrix transforms vector in in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be calculated using the SPICE interface and numbers will be calculated using the SPICE interface and numbers will be convention conversion to 3X. matrix transforms vector in in instrument frame to J2000 (q1 = sintheta 2), obtained from the NAIF provided C kernel. SPICE interface and numbers will be convention conversion to 3X. matrix transforms vector in instrument frame to J2000			
geom.qsin2 SC_QY Spaceraft quaternion in Spaceraft quaternion in spaceraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qsin2 SC_QY Spaceraft quaternion in spaceraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Spaceraft quaternion in J2000 (q)= sin(theta2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Spaceraft quaternion in J2000 (q)= sin(theta2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Spaceraft quaternion in J2000 (q)= sin(theta2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based of the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based of the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based of the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculation will be based of the MIDOBS time. SPICE interface and numbers will be accurater to the accuracy of the SPICE kernels. Calculatere solution in J3000 (q) = sin(theta2)) obtained from the NA			
geom.qsin2 SC_QY Spacecraft quaternion in 12000 (Q2=sin(fbct2)) obtained from the NAIF provided C kernel. SPICE convertion conversion to 3x, matrix transforms vector in spacecraft firme to 72000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QY Spacecraft quaternion in 72000 (Q3=sin(fbct2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Spacecraft quaternion in 72000 (Q3=sin(fbct2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Instrument quaternion in 72000 (Q1=sin(fbct2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in 73000 (Q1=cos(22)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in 7400 (S1 kernels value) 7400 (S1 kernels V2000 7400 (S			
geom.qsin2 SC_QY QY geom.qsin2 SC_QY Calculations will be accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QY Data in the SPICE sernels. geom.qsin3 SC_QZ The Mark SPICE kernels. geom.qsin4 Not server			
geom.qsin2 SC_QY btained from the NAIF provided C kernel. SPICE convention conversion to 3x interface and numbers will be accurate to the accuracy of the MIDOBS time. geom.qsin2 SC_QY the MIDOBS time. geom.qsin3 SC_QZ Spacecraft quaternion in J2000 (q3= sin(theta 2)) obtained from the NAIF provided C kernel. SPICE calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Spacecraft quaternion in J2000 (q3= sin(theta 2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cst/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Instrument quaternion in instrument quaternion in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qcos0 INST_QA Qi is the sclar value.			
geom.qsin2 SC_QY provided C Kernel. SPICE geom.qsin3 SC_QY Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Spacecraft quaternion in 12000 (q3-sin(htbar2)) geom.qsin3 SC_QZ Spacecraft quaternion in 12000 (q3-sin(htbar2)) geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF geom.qsin3 SC_QZ Calculations will be based on the MAIF provided C kernels. Calculations will be based on the MAIF provided C kernels. Calculations will be based on the MAIF geom.qsin3 SC_QZ Instrument quaternion in 12000 (q1 = con(t2)) obtained from the NAIF provided C kernels. geom.qcos0 INST_QA Qi is the secaler value. geom.qcos0 INST_QA Qi is the secaler value.			
geom.qsin2 SC_QY The SPICE iterals. geom.qsin2 SC_QY The SPICE iterals. geom.qsin3 SC_QY The SPICE iterals. geom.qsin3 SC_QY Sc_QY geom.qsin4 Space-carif quaterino in J2000 (q3-sintheta/2) J0 totained from the NAIF provided C kernel. SPICE convertion conversion to 3X matrix transforms vector in space-carif frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Sc_QZ geom.qsin4 Sc_QZ Sc_QZ			
geom.qsin2 SC_QY matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin2 SC_QY Spacecraft quaternion in J2000 (q)= sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE convention conversion to 3x, matrix transforms vector in in instrument frame to J2000 (question the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in in strumen			
geom.qsin2 SC_QY speceraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. Spaceraft quaternion in J2000 (q3= sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in spaceraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be based or the MIDOBS time. geom.qsin3 SC_QZ geom.qcos0 INST_QA up Instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be based or the SPICE kernels. Calculations will be based or the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qcos0 INST_QA Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value.			_
gcom.qsin2 SC_QY frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. gcom.qsin2 SC_QY Spaceraft quaternion in J2000 (q3- sin(theta2)) obtained from the NAIF provided C kernel. SPICE conversion to 3x, matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculated using the SPICE convention conversion to 3x, matrix transforms vector in instrument frame to I2000 frame. This value is calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculated using the SPICE interface and numbers will b accuracy of the SPICE kernels. Calculater on the NAIF provide C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000 (q1- sin(theta2)) obtained from the NAIF provide C kernel. SPICE conversion to 3x, matrix transforms vector in instrument frame to J2000			
geom.qsin2 SC_QY calculated using the SPICE interface and numbers will baccurate to the accurate of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin2 SC_QY Spacecraft quaternion in J2000 (q3= sin(theta2)) obtained from the NAIF: provided C Kernel. SPICE convention conversion to 3x matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate of the secures of the SPICE kernels. geom.qsin3 SC_QZ Calculations will be accurate of the accurate of the secures of the SPICE kernels. Calculations will be based on the NAIF provided C Kernel. SPICE interface and numbers will be accurate of the secures of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q1 = cos(r2)) obtained from the NAIF provided C Kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 (q1 = cos(r2)) obtained from the NAIF provided C Kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 (q0 = cos(r2)) obtained from the NAIF provided C Kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 (q0 = so(r2)) obtained from the NAIF provided C Kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 (q0 is the scalar value is calculated using the SPICE interface and numbers will be accurate to the accurate of the SPICE kernel.			
geom.qsin2 SC_QY interface and numbers will be accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin2 SC_QY the MIDOBS time. Spacecraft quaternion in J2000 (q3 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE conversion to 3X, matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE ternels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 - cos(t/2)) obtained from the NAIF provided C kernel. SPICE ternels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 - cos(t/2)) obtained from the NAIF provided C kernel. SPICE ternels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurated to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurated to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurated to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will be accurated to the accuracy of the SPICE kernels. SPICE interface and numb			
geom.qsin2 SC_QY accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin2 SC_QY Spacecraft quaternion in J2000 (q3 = sin(thetr2)) obtained from the NAIF provided C Kernel. SPICE convention conversion to 3x matrix transforms vector in spacecraft frame to J2000 frame. This value is eclulated taising the SPICE kernels. geom.qsin3 SC_QZ the MIDOBS time. geom.qsin4 SPICE kernels. Calculations will be based or the SPICE kernels. geom.qsin3 SC_QZ the MIDOBS time.			calculated using the SPICE
geom.qsin2 SC_QY the SPICE Lemels. Calculations will be based or the MIDOBS time. geom.qsin2 Spacecraft quaternion in J2000 (q3= sin(theta/2)) obtained from the NAIP provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(U2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(U2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qcos0 INST_QA Q0 is the scalar value. geom.qcos0 INST_QA Instrument quaternion in J2000 (q1 = int(that2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000			interface and numbers will b
geom.qsin2 SC_QY Calculations will be based or the MIDOBS time. geom.qsin2 Spacecraft quaternion in J2000 (q3= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in J2000 (q1 = sin(theta/2))			accurate to the accuracy of
geom.qsin2 SC_QY Calculations will be based or the MIDOBS time. geom.qsin2 Spacecraft quaternion in J2000 (q3= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in J2000 (q1 = sin(theta/2))			the SPICE kernels.
geom.qsin2 SC_QY the MIDOBS time. spacecraft quaternion in J2000 (q3 = sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(U2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(U2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qcos0 INST_QA Qi is the scalar value. geom.qcos0 INST_QA Qi is the scalar value.			
geom.qsin3 Spacecraft quaternion in J2000 (q3= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(U2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qcos0 INST_QA Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention onversion to 3x matrix transforms vector in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument quaternion in J2000 (q1= sin(theta/2))	geom.qsin2	SC QY	
geom.qsin3 SC_QZ Instrument quaternion in J2000 (q3= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in spacecraft frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE werels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value.		- `	
geom.qsin3 SC_QZ obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in is spacecraft frame to J2000 frame. This value is calculations will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Calculations will be to the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(V2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000 frame. This value is calculations will be based or the MIDOBS time. geom.qcos0 INST_QA Qo is the scalar value. geom.qcos0 INST_QA Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the SPICE kernels. Calculation in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in spacecraft frame to 12000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in 12000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to 12000 frame. This value is calculated using the SPICE convention conversion to 3x; matrix transforms vector in instrument frame to 12000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qcos0 INST_QA Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value.			
geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF geom.qcos0 geom.qcos0 INST_QA Q0 is the scalar value. Instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qcos0 INST_QA Q0 is the scalar value. Instrument frame to J2000 frame. This value is calculations will be based on the MIDOBS time. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q1 is the scalar value. Instrument frame to J2000 frame. This value is calculated to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that J2000 (q1 = sintheta?)) obtained from the NAIF provided C kernel. SPICE			
geom.qsin3 SC_QZ matrix transforms vector in spacecraft frame to 12000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in in instrument frame to 12000 frame. This value is calculated using the SPICE quaternion swill be based or the MIDOBS time. SPICE convention conversion to 4x matrix transforms vector in in strument frame to 12000 frame. This value is calculated using the SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in in strument frame to J2000			
geom.qsin3 SC_QZ spacecraft frame to J2000 geom.qsin3 SC_QZ calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE terrels. Calculations will be based or Dobt (q) = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE convention conversion to 3x matrix transforms vector in interface and numbers will b accurate to the accuracy of the MIDOBS time. SPICE calculated using the SPICE interface and numbers will b accurate to the accuracy of the MIDOBS time. SPICE calculations will be based or geom.qcos0 INST_QA Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. attract transforms vector in instrument quarterion in j2000 (ql = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x attract the transet of 2000 instrument quarterion in			
geom.qsin3 SC_QZ frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta2))) obtained from the NAIF provided C kernel. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta2))) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE interface and numbers will be accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE interface and numbers will be accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ interface and numbers will b geom.qsin3 SC_QZ Calculations will be based on the MIDOBS time. Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be ased on the MIDOBS time. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be based on the MIDOBS time. SPICE equaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 (q1 = sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 (q1 = sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ the SPICE kernels. Calculations will be based or the MIDOBS time. geom.qsin3 SC_QZ Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based or the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. J2000 (q1 = sin(theta2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ Calculations will be based on the MIDOBS time. J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qsin3 SC_QZ the MIDOBS time. Instrument quaternion in J2000 (q0 = cos(t2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Instrument quaternion in J2000 (q1 = sin(theta/2))) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Instrument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in in strument quaternion in J2000 (q1 = sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in in strument frame to J2000			Calculations will be based o
geom.qcos0 INST_QA Instrument quaternion in J2000 (q0 = cos(t/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x, matrix transforms vector in instrument frame to J2000	geom.qsin3	SC_QZ	the MIDOBS time.
geom.qcos0 INST_QA obtained from the NAIF geom.qcos0 INST_QA Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 instrument frame to J2000			Instrument quaternion in
geom.qcos0 INST_QA obtained from the NAIF geom.qcos0 INST_QA Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 instrument frame to J2000			J2000 (q0 = cos(t/2))
geom.qcos0 INST_QA provided C kernel. SPICE geom.qcos0 INST_QA Instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention to 3x. matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will be accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA matrix transforms vector in instrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			
geom.qcos0INST_QAinstrument frame to J2000 frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value.geom.qcos0INST_QAQ0 is the scalar value.Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			_
geom.qcos0 INST_QA frame. This value is calculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			
geom.qcos0INST_QAcalculated using the SPICE interface and numbers will b accurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value.geom.qcos0INST_QAInstrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA interface and numbers will be accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			
geom.qcos0INST_QAaccurate to the accuracy of the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value.geom.qcos0INST_QAInstrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA the SPICE kernels. Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA Calculations will be based on the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. geom.qcos0 INST_QA Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x; matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA the MIDOBS time. SPICE quaternion standard is that Q0 is the scalar value. Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA quaternion standard is that Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x. matrix transforms vector in instrument frame to J2000			
geom.qcos0 INST_QA Q0 is the scalar value. Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x: matrix transforms vector in instrument frame to J2000			
Instrument quaternion in J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000	<u>^</u>		
J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000	geom.qcos0	INST_QA	
J2000 (q1= sin(theta/2)) obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000			Instrument quaternion in
obtained from the NAIF provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000			
provided C kernel. SPICE convention conversion to 3x matrix transforms vector in instrument frame to J2000			
convention conversion to 3x matrix transforms vector in instrument frame to J2000			
matrix transforms vector in instrument frame to J2000			
instrument frame to J2000			
I I I I I I I I I I I I I I I I I I I			
geom.qsin1 INST_QX calculated using the SPICE interface and numbers will b	geom asin1	INST OX	calculated using the SPICE
geomegani INSI_QA Interface and numbers will b	goom.ysiiii	тирт_Ку	interface and numbers will b

			RELEASED
			accurate to the accuracy of
			the SPICE kernels.
			Calculations will be based on
			the MIDOBS time.
			Instrument quaternion in
			J2000 (q2= sin(theta/2)) obtained from the NAIF
			provided C kernel. SPICE
			convention conversion to 3x3
			matrix transforms vector in
			instrument frame to J2000
			frame. This value is
			calculated using the SPICE
			interface and numbers will be
			accurate to the accuracy of
			the SPICE kernels. Calculations will be based on
geom.qsin2	INST QY		the MIDOBS time.
6 1			Instrument quaternion in
			J2000 (q3 = sin(theta/2))
			obtained from the NAIF
			provided C kernel. SPICE
			convention conversion to 3x3
			matrix transforms vector in
			instrument frame to J2000 frame. This value is
			calculated using the SPICE
			interface and numbers will be
			accurate to the accuracy of
			the SPICE kernels.
			Calculations will be based on
geom.qsin3	INST_QZ		the MIDOBS time.
			Coordinate type for reference
			pixel, values are either "RA -TAN" = gnomic or tangent
			plane or "SIP" - simple
mission area.ctype1	CTYPE1		image polynomial.
			Coordinate type for the
			reference pixel, values are
			either "DECTAN" =
			gnomic or tangent plane or
mission area.ctype2	CTYPE2		"SIP" - simple image
	CTITE2		polynomial. Right ascension of the
			reference pixel or boresight
geom.right_ascension_angle	CRVAL1	Deg	vector in degrees.
			Declination of reference
	CDVAL2		pixel or boresight vector in
geom.declination_angle	CRVAL2	Deg	degrees. Units for the reference pixel
mission_area.cunit1	CUNIT1	Deg	1
		_	Units for the reference pixel
mission_area.cunit2	CUNIT2	Deg	2 X 1: t : 1 1 C
			X coordinate pixel number of the boresight of the image of
			the reference point to which
			the projection and the
geom.horizontal.coordinate_pixel	CRPIX1		rotation refer.
	· · ·	•	

			Y coordinate pixel number of
			the boresight of the image of
			the reference point to which
			the projection and the
eom.vertical.coordinate.pixel	CRPIX2		rotation refer.
			Change in RA per pixel
			along first axis (sample)
mission_area.cd1_1	CD1_1	Deg	evaluated at reference pixel
			Change in RA per pixel
			along second axis (line)
mission_area.cd1_2	CD1_2	Deg	evaluated at reference pixel
			Change in DEC per pixel
			along first axis (sample)
mission_area.cd2_1	CD2_1	Deg	evaluated at reference pixel
			Change in DEC per pixel
			along second axis (line)
mission_area.cd2_2	CD2_2	Deg	evaluated at reference pixel
			Azimuth of the North polar
			Axis of the target named in
			FITS keyword BENNURDT
			(typically Bennu), positive
			from the +NAXIS2 direction
,	,	D	toward the +NAXIS1
mission_area.bennana	n/a	Deg	direction; see also
			BENNURDQ for a statement
			of the quality of this value;
			assumes undistorted optics;
			will be -999 if the calculation
			fails
			Right Ascension of the
			vector, expressed in the Earth
			Mean Equator of the J2000
			Epoch, from the ORX
,	,		spacecraft toward the target
mission_area.bennu_ra	n/a	Deg	named in FITS keyword
			BENNURDT (typically
			Bennu); see also
			BENNURDQ for a statement
			of the quality of this value
			Declination of the vector,
			expressed in the Earth Mean
			Equator of the J2000 Epoch,
			from the ORX spacecraft
mission_area.bennu_dec	n/a	Deg	toward the target named in
		- C	FITS keyword BENNURDT
			(typically Bennu); see also
			BENNURDQ for a statement
			of the quality of this value
			Approximate offset from
			CRPIX1 pixel in +NAXIS1
			direction of the location of
			the center of the target
	n/a	D' 1	named in FITS keyword
mission_area.bennu_naxis1_offset		Pixel	BENNURDT (typically
			Bennu); see also
			BENNURDQ for a statement
			of the quality of this value;
			assumes undistorted optics
	I	I	

			KELEASED
mission_area.bennu_naxis2_offset	n/a	Pixel	Approximate offset from CRPIX2 pixel in +NAXIS2 direction of the location of the center of the target named in FITS keyword BENNURDT (typically Bennu); see also BENNURDQ for a statement of the quality of this value; assumes undistorted optics
mission_area.bennu_radec_target	n/a		Target for the BENNURA, BENNUDEC, BENNUNX1 and BENNUNX2 FTIS keywords; typically, BENNU; may be NONE if the calculation failed. Target is not required to be in the field of view.
mission_area.bennu_radec_quality	n/a		(Quality: provenance) for the BENNURA, BENNUDEC, BENNUNX1, BENNUNX2 FITS keywords. This will be one of three values: (BEST: SPK), meaning the geometry was obtained from SPICE SP-Kernels; (POOR: osculating elements; +/- 1E6km), meaning the geometry was obtained from osculating orbital elements of Bennu w.r.t the Sun, and will have uncertainties of order 1E6km; (NONE: FAILURE), meaning both the SPK and elements methods failed; the parentheses, (), are only delimiters here and not part of the quality:provenance values.
mission_area.radesys	RADESYS		International Celestial Reference System (ICRS)
geom.name	EQUINOX		Epoch of mean equator and equinox (J2000)
geom.celestial_north_clock_angle	ORIENTAT	Deg	The angle (in degrees) between the image positive y-axis and celestial north. Metakernel that holds all the
geom.spice_kernel_file_name	META_KER		spice kernels used for processing
mission_area.ckqual	CKQUAL		Quality of C-Kernel (nominal = 'RECONSTRUCT', contingency = 'PREDICT')
mission_area.misspxls	MISSPXLS		Count of pixels where data is missing in the image
mission area.checksum result	CHCKSUM		The pass/fail state of the image check sum

		KELEASED
		Spacecraft quaternion in J2000 (q0 = cos(t/2)) obtained at the ATT_TIME. Quaternion values are telemetry values based on the ATT_TIME parameter and may differ from the SPICE
		calculated quaternions at mid-observation time by several seconds. This value is to be used with caution as the timing many not be for the boresight of the
mission_area.quaternion0	ATTQUAT0	corresponding image. SPICE quaternion standard is that Q0 is the scalar value which is followed here.
		Spacecraft quaternion in J2000 (q1= sin(theta/2) obtained at the ATT_TIME. Quaternion values are telemetry values based on the ATT_TIME parameter and may differ from the SPICE calculated quaternions at mid-observation time by several seconds. This value is to be used with caution as the timing many not be for the boresight of the
mission area.quaternion1	ATTQUAT1	corresponding image.
mission_area.quaternion2	ATTQUAT2	Spacecraft quaternion in J2000 (q2= sin(theta/2))obtained at the ATT_TIME. Quaternion values are telemetry values based on the ATT_TIME parameter and may differ from the SPICE calculated quaternions at mid- observation time by several seconds. This value is to be used with caution as the timing many not be for the boresight of the corresponding image.
	ATTQUATZ	Spacecraft quaternion in
		J2000 (q3= sin(theta/2)) obtained at the ATT_TIME. Quaternion values are telemetry values based on the ATT_TIME parameter and may differ from the SPICE calculated quaternions at mid-observation time by several seconds. This value is to be used with caution as the
mission_area.quaternion3	ATTQUAT3	timing many not be for the

1	1		heresisht of the
			boresight of the corresponding image.
			The x-axis component of the
			spacecraft angular momentum rate in spacecraft
			body frame at the
mission_area.att_rate_x	ATTRATE1		ATT_TIME
			The y-axis component of the spacecraft angular
			momentum rate in spacecraft
mission_area.att_rate_y	ATTRATE2		body frame at the ATT_TIME
			The z-axis component of the spacecraft angular
			momentum rate in spacecraft
			body frame at the
mission_area.att_rate_z	ATTRATE3		ATT_TIME The spacecraft clock time
			when attitude data was
mission_area.att_time	ATT_TIME		collected
			Touch and Go Camera Suite Powered On Digital Video
			Recorder: 0 =
mining and an dam	DVRON		TAGCAMS_DVR_1,1 = $TAGCAMS_DVR_2$
mission_area.powered_on_dvr			TAGCAMS_DVR_2
mission_area.image_len	IMG_LEN	Bytes	Recorded image length TAGCAMS commanded
mission_area.sequence_id	TCSEQID		sequence identifier
mission_area.image_id	TCIMGID		TAGCAMS Commanded Image Identifier
			TAGCAMS Mini Header
			spacecraft clock time in seconds. The spacecraft
			clock time tag is the start of
			exposure for line 1 of the image plus or minus 0.1
mission_area.seconds	TCSCLKS	Sec	seconds.
			TAGCAMS Mini Header
			spacecraft clock time in sub- seconds. The spacecraft
			clock time tag is the start of
			exposure for line 1 of the
mission_area.subseconds	TCSCLKSS	Millisec	image plus or minus 0.1 seconds.
mission area.img cmd opcode	TCOPCODE		TAGCAMS Command 8-bit Operations Code (Opcode)
			Specifies which camera to
			use. Legal values are 1 (for
			both DVR-4s) and 2 (for the DVR-4 with StowCam
mission_area.img_cmd_cam	TCCAM		attached).
			The sequence identifier to
mission area.img cmd seq	TCSEQ		assign to these images. Legal values are 1 to 255.
_ 01	× .	1	

			The number of images to
			acquire in this sequence.
mission_area.img_cmd_num_imgs	TCN_IM	_	Legal values are 1 to 255.
			The commanded 16-bit
			exposure time for each
			image. For values from 0 to
			5000, exposure time is in
			units of 0.1 msec, providing exposures of 0 to 0.5
			seconds. From 5001 to
			65535, exposure time is in
			units of 0.5msec with an
			offset of 0.5 seconds, so that
			the maximum exposure time
			is 0.5e-3*(65535-5000)
mission_area.img_cmd_exp	TCEXP		+0.5= 30.7675 seconds.
			The 16-bit time interval
			between images in seconds,
mining and include	TONIT	S	from 0 (as fast as possible) to (5525)
mission_area.img_cmd_int	TCINT	Sec	65535 seconds. The starting X of the area of
			the image sensor to read, in
			multiples of 16 pixels. If 0 is
			used for all values, then the
			full frame is read. (Full
			frames = 2592×1944 pixels
			with dark pixels off,
			2752x2004 pixels with dark
			pixels on. Other values are
			valid if windowing is
			enabled) Reading outside the
mission and an	TCSX	Pixel	bounds of the image array is
mission_area.img_cmd_sx	103A	FIXCI	illegal. The starting Y of the area of
			the image sensor to read, in
			multiples of 16 pixels. If 0 is
			used for all values, then the
			full frame is read (Full frame
			$= 2592 \times 1944$ pixels with
			dark pixels off, 2752x2004
			pixels with dark pixels on.
			Other values are valid if
			windowing is enabled)
mission area ima and av	TCSY	Pixel	Reading outside the bounds of the image array is illegal.
mission_area.img_cmd_sy	1001	FIXCI	The starting Z of the area of
			the image sensor to read, in
			multiples of 16 pixels. If 0 is
			used for all values, then the
			full frame is read (Full frame
			$= 2592 \times 1944$ pixels with
			dark pixels off, 2752x2004
			pixels with dark pixels on.
			Other values are valid if
			windowing is enabled)
mission area ima and w	TCW	Direc1	Reading outside the bounds
mission_area.img_cmd_w	TCW	Pixel	of the image array is illegal.

		RELEASED
mission area.img cmd h	ТСН	PixelThe starting height of the area of the image sensor to read, in multiples of 16 pixels. If 0 is used for all values, then the full frame is read (Full frame = 2592x1944 pixels with dark pixels off, 2752x2004 pixels with dark pixels on. Other values are valid if windowing is enabled) Reading outside the bounds of the image array is illegal.
	TCMODE	0- 12-to-8 bit companding on/off; 1-3 companding mode (0 = square root, 1-7 linear divide by exp2(N-1)); 4- dark pixels on/off; test pattern control (on=1/off=0); 6 enable additional sensor register settings (enable=1/disable=0); 7
mission_area.img_cmd_mode		reserved The sensor analog gain value. Legal values are 8-31 and 40-63. Values from 8 to 31 specify gains in the range 1 to 3.875 in steps of 0.125; values from 40 to 63 specify gain in the range 2 to 7.75 in steps of 0.25. Gains in the range (2, 4) are commanded
mission_area.img_cmd_gain	TCGAIN	Factorusing the first rangeThe subsampling to use when acquiring the image. Legal values for this field are 0 (no subsampling), 1 (bin 2x2), 4 (bin 4x4), and 16-23 (skip
mission_area.img_cmd_subsample	TCSSMPL	(N-14)*(N-14)).Take image hardware image compression mode. 0 means no compression; 0xff means lossless compression; 1-99 means JPEG compression quality N, 4:2:2 color subsampling if applicable; 101-199 means JPEG compression quality N, 4:4:4 color subsampling if applicable. Hardware compression is only available in 8-bit mode; if companding is turned off, this value must
mission_area.img_cmd_compress	TCCOMP	be 0. Records the pixel depth of the transmitted image. If the image was initially acquired
mission_area.bpp	TCBPP	bits/pixel as 12 bits, then it can be sent as 12 bits or 8 bits. If the

RELEASED

			KELEASED
			image was initially acquired as 8 bits, then this value is ignored, and the output is always 8 bits. The companding mode is only significant if companding is turned on. Keyword may be blank if the transmit-image- raw command was used to acquire image.
mission area.trans cmd compression	TCTRCOMP		Compression mode. 0 means no compression; 0xff means lossless compression; 1-99 means JPEG compression quality N, grayscale; 101-199 means JPEG compression quality N, 4:2:2 color subsampling. JPEG compression can only be applied to 8-bit data. Note that if a color camera's image is compressed as grayscale, compression efficiency may be degraded. Keyword may be blank if the transmit- image-raw command was used to acquire image.
mission_area.trans_cmd_summing	TCSUM		Turns 2x2 summing on or off. Legal values are 1 (no summing) and 2 (2x2 summing.) Summing can only be applied to 8-bit data. Images with both compression and summing selected will be compressed but not summed. Keyword may be blank if the transmit- image-raw command was used to acquire image.
mission_area.camera_head_temp	ТССНТЕМР	DN	Camera head temperature in digital number (if available).
mission_area.spare	TCSPR		Spare
mission_area.image_size_estimate	TCINSZ	Bytes	initial size estimate for image in flash

5.2.2 LO Status Data Product

The L0 status data product is the raw engineering data generated by TAGCAMS.

Fields Name	Field	Fields Locations	Data Type	Field Length	Field Length	Units	Description
	Number	(Start Byte)		(bits)	(bytes)		
							seconds portion of the timestamp
seconds_raw	1	1	UnsignedMSB4	32	4	seconds	of the status reading milliseconds portion of the
subseconds_raw	2	5	UnsignedByte	8	1	milliseconds	timestamp of the status reading
spare0	3	6	UnsignedByte	8	1	n/a	spare
spare1	4	7	UnsignedByte	8	1	n/a	spare
command_opcode	5	8	UnsignedByte	8	1	n/a	opcode of command producing this packet, or 0x20 for status
last_opcode	6	9	UnsignedMSB4	32	4	n/a	last opcode received
valid_cmds_cnt	7	13	UnsignedMSB4	32	4	n/a	valid commands received since power-on
rejected cmds_cnt	8	17	UnsignedMSB4	32	4	n/a	rejected commands received since power-on
inst_sw_ver	9	21	UnsignedMSB4	32	4	n/a	instrument software version
checksum	10	25	UnsignedMSB4	32	4	n/a	checksum of instrument software
num_bad_flash_blocks	11	29	UnsignedMSB4	32	4	n/a	number of bad flash blocks
num_free_flash_blocks	12	33	UnsignedMSB4	32	4	n/a	number of free flash blocks
total_usable_flash_blocks	13	37	UnsignedMSB4	32	4	n/a	total number of usable flash blocks
num_products_in_use	14	41	UnsignedMSB4	32	4	n/a	number of products in use
num_pages_used	15	45	UnsignedMSB4	32	4	n/a	number of flash pages used in products
flash_err_cnt	16	49	UnsignedMSB4	32	4	n/a	flash error count in last built-in self-test
dram_errors	17	53	UnsignedMSB4	32	4	n/a	Dynamic random access memory errors in last built-in self-test
num_correctable_ecc_error s	18	57	UnsignedMSB4	32	4	n/a	number of correctable error correcting code (ECC) errors
num sequences stored	19	61	UnsignedMSB4	32	4	n/a	number of sequences stored in flash
camera statu	20	65	UnsignedMSB4	32	4	n/a	camera status as bitmask
num_uncorrectable_ecc_er							number of uncorrectable error
rors	21	69	UnsignedMSB4	32	4	n/a	correcting code (ECC) errors number of camera head command
num_camera_head_upsets	22	73	UnsignedMSB4	32	4	n/a	errors
ext_err_code	23	77	UnsignedMSB4	32	4	n/a	extended error code for last command ending in error
text_data_checksum	24	81	UnsignedMSB4	32	4	n/a	text+data checksum
flash_device_status	25	85	UnsignedMSB4	32	4	n/a	flash device status as bitmask
							bitmask of dynamic random access memory (DRAM) device status from last built-in self-test,
dram_device_status	26	89	UnsignedMSB4	32	4	n/a	nominal 0 number of flash operation
num_flash_op_timouts	27	93	UnsignedMSB4	32	4	n/a	timeouts
num_flash_op_timouts	28	97	UnsignedMSB4	32	4	n/a	execution time of last command in ticks, if measured
bram_ecc_status_register	29	101	UnsignedMSB4	32	4	n/a	Block random access memory error correction code (BRAM ECC) status register

Table 8 - L0 Status Data Product Fields

		Fields		Field	Field		
Fields Name	Field	Locations	Data Type	Length	Length	Units	Description
	Number	(Start Byte)		(bits)	(bytes)		
num_spacewire_timeouts<	30	105	UnsignedMSB4	32	4	n/a	number of Spacewire timeouts
num_received_char_overru ns	31	109	UnsignedMSB4	32	4	n/a	number of receiver character overruns
orrectable_bram_ecc_ers_c	32	113	UnsignedMSB4	32	4	n/a	count of correctable Block random access memory error correction code (BRAM ECC) errors
last_image_id	33	117	UnsignedMSB4	32	4	n/a	last image identifier acquired
num_images_acquired	34	121	UnsignedMSB4	32	4	n/a	number of images acquired
last_time_update_msg_tim	35	125	UnsignedMSB4	32	4	n/a	time of last time update message (seconds)
num_time_ticks_seen	36	129	UnsignedMSB4	32	4	n/a	number time ticks seen
fpga_logic_version	37	133	UnsignedMSB4	32	4	n/a	FPGA (field-programmable gate array) logic version
camera_0_current	38	137	UnsignedMSB4	32	4	DN	camera 0 current
camera_1_current	39	141	UnsignedMSB4	32	4	DN	camera 1 current
camera_2_current	40	145	UnsignedMSB4	32	4	DN	camera 2 current
camera_3_current	41	149	UnsignedMSB4	32	4	DN	camera 3 current
camera_0_voltage	42	153	UnsignedMSB4	32	4	DN	camera 0 voltage
camera_1_voltage	43	157	UnsignedMSB4	32	4	DN	camera 1 voltage
camera_2_voltage	44	161	UnsignedMSB4	32	4	DN	camera 2 voltage
camera_3_voltage	45	165	UnsignedMSB4	32	4	DN	camera 3 voltage
camera_0_temp	46	169	UnsignedMSB4	32	4	DN	camera 0 temperature
camera_1_temp	47	173	UnsignedMSB4	32	4	DN	camera 1 temperature
camera_2_temp	48	177	UnsignedMSB4	32	4	DN	camera 2 temperature
camera_3_temp	49	181	UnsignedMSB4	32	4	DN	camera 3 temperature
dvr_pos1_2v	50	185	UnsignedMSB4	32	4	DN	Digital Video Recorder plus 1.2 Volt or internal temperature monito.r
dvr_pos2_5v	51	189	UnsignedMSB4	32	4	DN	Digital video recorder plus 2.5 volt monito.r
dvr_pos3_3v	52	193	UnsignedMSB4	32	4	DN	Digital video recorder plus 3.3 volt monitor.
dvr_pos5v	53	197	UnsignedMSB4	32	4	DN	Digital video recorder plus 5 volt monitor.

5.2.3 L1 Status Data Product

The L1 Status data product contains engineering values converted from DNs to physical units.

Fields Name	Field	Field Location	Data Type	Field Length	Field Length	Units	Description
	Number	(Start Byte)		(bits)	(bytes)		
seconds_raw	1	1	UnsignedMSB4	32	4	seconds	seconds portion of the timestamp of the status reading
subseconds_raw	2	5	UnsignedByte	8	1	milliseconds	milliseconds portion of the timestamp of the status reading
spare0	3	6	UnsignedByte	8	1	n/a	spare
spare1	4	7	UnsignedByte	8	1	n/a	spare
command_opcode	5	8	UnsignedByte	8	1	n/a	opcode of command producing this packet, or 0x20 for status
last_opcode	6	9	UnsignedMSB4	32	4	n/a	last opcode received
valid_cmds_cnt	7	13	UnsignedMSB4	32	4	n/a	valid commands received since power-on
rejected_cmds_cnt	8	17	UnsignedMSB4	32	4	n/a	rejected commands received since power-on
inst_sw_ver	9	21	UnsignedMSB4	32	4	n/a	instrument software version
checksum	10	25	UnsignedMSB4	32	4	n/a	checksum of instrument software
num_bad_flash_blo cks	11	29	UnsignedMSB4	32	4	n/a	number of bad flash blocks
num_free_flash_blo cks	12	33	UnsignedMSB4	32	4	n/a	number of free flash blocks
total_usable_flash_b locks	13	37	UnsignedMSB4	32	4	n/a	total number of usable flash blocks
num_products_in_u se	14	41	UnsignedMSB4	32	4	n/a	number of products in use
num_pages_used	15	45	UnsignedMSB4	32	4	n/a	number of flash pages used in products
flash_err_cnt	16	49	UnsignedMSB4	32	4	n/a	flash error count in last BIST
dram_errors	17	53	UnsignedMSB4	32	4	n/a	DRAM errors in last BIST
num_correctable_ec c_errors	18	57	UnsignedMSB4	32	4	n/a	number of correctable ECC errors
num_sequences_sto red	19	61	UnsignedMSB4	32	4	n/a	number of sequences stored in flash
camera_statu	20	65	UnsignedMSB4	32	4	n/a	camera status as bitmask
num_uncorrectable_ ecc_errors	21	69	UnsignedMSB4	32	4	n/a	number of uncorrectable ECC errors
num_camera_head_ upsets	22	73	UnsignedMSB4	32	4	n/a	number of camera head command errors
ext_err_code	23	77	UnsignedMSB4	32	4	n/a	extended error code for last command ending in error
text_data_checksum	24	81	UnsignedMSB4	32	4	n/a	text+data checksum
flash_device_status	25	85	UnsignedMSB4	32	4	n/a	flash device status as bitmask

CHECK THE OSIRIS-REX DOCUMENT SERVERS AT <u>https://soedms.as.arizona.edu/</u> TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.

RELEASED

Fields Name	Field	Field Location	Data Type	Field Length	Field Length	Units	Description
	Number	(Start Byte)		(bits)	(bytes)		
dram device status	26	Byte) 89	UnsignedMSB4	32	4	n/a	bitmask of DRAM device status from last BIST, nominal 0
num_flash_op_timo uts	27	93	UnsignedMSB4	32	4	n/a	number of flash operation timeouts
num_flash_op_timo uts	28	97	UnsignedMSB4	32	4	n/a	execution time of last command in ticks, if measured
bram_ecc_status_re gister	29	101	UnsignedMSB4	32	4	n/a	BRAM ECC status register
num_spacewire_tim eouts<	30	105	UnsignedMSB4	32	4	n/a	number of Spacewire timeouts
num_received_char _overruns	31	109	UnsignedMSB4	32	4	n/a	number of receiver character overruns
orrectable_bram_ec c_ers_cnt	32	113	UnsignedMSB4	32	4	n/a	count of correctable BRAM ECC errors
last_image_id	33	117	UnsignedMSB4	32	4	n/a	last image identifier acquired
num_images_acquir ed	34	121	UnsignedMSB4	32	4	n/a	number of images acquired
last_time_update_m sg_time	35	125	UnsignedMSB4	32	4	n/a	time of last time update message (seconds)
num_time_ticks_see n	36	129	UnsignedMSB4	32	4	n/a	number of lost time ticks
fpga_logic_version	37	133	UnsignedMSB4	32	4	n/a	FPGA logic version
camera_0_current	38	137	IEEE754MSBSingl e	32	4	Milliamps	camera 0 current
camera_1_current	39	141	IEEE754MSBSingl e	32	4	Milliamps	camera 1 current
camera_2_current	40	145	IEEE754MSBSingl e	32	4	Milliamps	camera 2 current
camera_3_current	41	149	IEEE754MSBSingl e	32	4	Milliamps	camera 3 current
camera_0_voltage	42	153	IEEE754MSBSingl e	32	4	Volts	camera 0 voltage
camera_1_voltage	43	157	IEEE754MSBSingl e	32	4	Volts	camera 1 voltage
camera_2_voltage	44	161	IEEE754MSBSingl e	32	4	Volts	camera 2 voltage
camera_3_voltage	45	165	IEEE754MSBSingl e	32	4	Volts	camera 3 voltage
camera_0_temp	46	169	IEEE754MSBSingl e	32	4	degC	camera 0 temperature
camera_1_temp	47	173	IEEE754MSBSingl e	32	4	degC	camera 1 temperature
camera_2_temp	48	177	IEEE754MSBSingl e	32	4	degC	camera 2 temperature
camera_3_temp	49	181	IEEE754MSBSingl e	32	4	degC	camera 3 temperature
dvr_pos1_2v	50	185	IEEE754MSBSingl e	32	4	Volts	Digital Video Recorder plus 1.2 Volt or internal temperature monitor
dvr_pos2_5v	51	189	IEEE754MSBSingl e	32	4	Volts	Digital video recorder plus 2.5 volt monitor
dvr_pos3_3v	52	193	IEEE754MSBSingl e	32	4	Volts	Digital video recorder plus 3.3 volt monitor
dvr_pos5v	53	197	IEEE754MSBSingl e	32	4	Volts	Digital video recorder plus 5 volt monitor

CHECK THE OSIRIS-REX DOCUMENT SERVERS AT https://soedms.as.arizona.edu/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.

For the current, voltage, and temperature channels, the DN-to-EU mapping will be of the form eu = a*dn+b, where a and b will be supplied for each channel after characterization.

For the voltage channels, the nominal conversion is a=610.352e-6, b=0, EU is in volts.

For the current channels, the nominal conversion is a=0.1525879, b=0, EU is in milliamps.

For the temperature channels, the nominal conversion is a=0.15259, b=-273.14, EU in degrees C. Characterization of the flight units shows that the best-fit value of b is -275.02 for NavCam (primary DVR) and-273.43 for NFTCam and StowCam (secondary DVR.)

5.3 Label and Header Description

All data products are produced with PDS4 compliant detached XML labels. Examples of these labels can be found in Appendix7.5. FITS headers are described in Section 5.2

6 Applicable Software

The following sections describe display software that may be used to examine, display, or analyze the NavCam data products.

6.1 Utility Programs

At the current time, the OSIRIS-REx project has no plans to release any mission specific utility programs. As most TAGCAMS data products are FITS formatted files, any viewer with the capability of reading FITS files can be used to view the data products. Some examples of these viewers are IDL, J-Mars (<u>http://jmars.asu.edu/download</u>), and FV. A complete list of FITS viewers can be found at <u>http://fits.gsfc.nasa.gov/fits_viewer.html</u>.

6.2 Applicable PDS Software Tools

The PDS supplies a number of software tools that can be used in conjunction with PDS data products. Please refer to the PDS4 software website (<u>http://pds.nasa.gov/pds4/software/index.shtml</u>) for additional information on these tools.

6.3 Software Distribution and Update Procedure

As the OSIRIS-REx project will not be providing software, this section is not applicable.

7 Appendices

7.1 Definitions of Data Processing Levels

Table 10 shows the comparison of OSIRIS-REx, NASA and CODMAC data processing levels. The OSIRIS-REx team generally uses descriptions when classifying data rather than data levels.

OSIRIS- REx	NASA	CODMAC	Description
	Packet data	Raw - Level 1	Telemetry data stream as received at the ground station, with science and engineering data embedded.
Level 0 - Raw	Level 0	Edited - Level 2	Instrument science data (e.g., raw voltages, counts) at full resolution, time ordered, with duplicates and transmission errors removed.
Level 1- Uncalibrated	Level 1A	Calibrated - Level 3	NASA Level 0 data that have been located in space and may have been transformed (e.g., calibrated, rearranged) in a reversible manner and packaged with needed ancillary and auxiliary data (e.g., radiances with the calibration equations applied).
Level 2 - Calibrated	Level 1B	Resampled - Level 4	Irreversibly transformed (e.g., resampled, remapped, calibrated) values of the instrument measurements (e.g., radiances, magnetic field strength).
Level 3 - Processed	Level 1C	Derived - Level 5	NASA Level 1A or 1B data that have been resampled and mapped onto uniform space-time grids. The data are calibrated (i.e., radiometrically corrected) and may have additional corrections applied (e.g., terrain correction).
Level 4 - Derived	Level 2	Derived - Level 5	Geophysical parameters, generally derived from Level 1 data, and located in space and time commensurate with instrument location, pointing, and sampling.

Table 9 - Definitions of Data Processing Levels

RELEASED

Level 4 - Derived	Level 3	Derived - Level 5	Geophysical parameters mapped onto uniform space-time grids.
----------------------	---------	-------------------	--

OSIRIS-REx Data	Product Level Definitions
Level	Definition
OREx Level 0	<i>Telemetry</i> . Raw instrument data reconstructed from telemetry with header and ancillary information appended. Appended header and ancillary data is data necessary for further processing.
OREx Level 1	Uncalibrated. Data in one of the fundamental structures.
OREx Level 2	<i>Reversibly calibrated</i> . Data in units proportional to physical units. Since PDS allows offsets and scaling factors in its array and table structures, this would be the minimum level capable of satisfying the "in physical units" requirement.
OREx Level 3	<i>Irreversibly processed</i> . Higher-level products from a single source that cannot be losslessly converted back to the lower-level products from which they were derived. These might also satisfy the "in physical units" requirement.
OREx Level 4	<i>Derived data</i> . Products created by combining data from more than one source (instrument, observer, etc.).

7.2 Example PDS Labels

Example labels can be found in the TAGCAMS bundle document collection in a subdirectory named "example_labels". There are example labels for each type of TAGCAMS data product.