
Definition of the Flexible Image Transport
System (FITS)

December 9, 2005

FITS Standard

Version 2.1b

IAU FITS Working Group

http://fits.gsfc.nasa.gov/iaufwg/

Preface to Version 2.1b

This Version 2.1b of the FITS Standard is an interium release that incorporates 3
changes that were approved by the IAU FITS Working Group on 8 December 2005:

" added support for 64-bit integer columns in binary tables, with TFORMn = 9K9,

and

" added support for 64-bit descriptor columns in binary tables, with TFORMn =
9Q9.

" added conditionally support for FITS primary arrays and image extension with
64-bit integer pixels (the final wording of this change is still under negotiation).

The other recent change in this version (and in the previous 2.1 version) is that the

descriptions of the <Variable-Length Array= facility and the <Multidimensional Array=
convention have been moved from the unofficial Appendix B into section 8.3 of the FITS

Standard itself. The IAU FITS Working Group officially approved these changes to the
FITS Standard on 7 April, 2005.

Other than these changes, this version of the FITS Standard is very similar to the
NOST 100-2.0 version that was developed in 1999,approved by the IAU FITS Work-

ing Group in October 2000, and published in the Astronomy & Astrophysics scientific
journal in 2001 (volume 376, page 359).

Further information about the membership and role of the IAU FITS Working Group
can be found on the http://fits.gsfc.nasa.gov/iaufwg/ web site.

i

The NASA/Science Office of Standards and Technology (NOST) of the National

Space Science Data Center (NSSDC) of the National Aeronautics and Space Adminis-
tration (NASA) has been established to serve the space science communities in evolving

cost effective,interoperable data systems. The NOST performs a number of functions
designed to facilitate the recognition, development,adoption, and use of standards by

the space science communities.
Approval of a NOST standard requires verification by the NOST that the following

requirements have been met: consensus ofthe Technical Panel, proper adjudication

of the comments received from the targeted space and Earth science community, and
conformance to the accreditation process.

A NOST standard represents the consensus of the Technical Panel convened by the
NOST. Consensus is established when the NOST Accreditation Panel determines that

substantial agreement has been reached by the TechnicalPanel. However, consensus
does not necessarily imply that all members were in full agreement with every item in

the standard. NOST standards are not binding as published; however, they may serve
as a basis for mandatory standards when adopted by NASA or other organizations.

A NOST standard may be revised at any time, depending on developments in the
areas covered by the standard.Also, within five years from the date of its issuance, this

standard will be reviewed by the NOST to determine whether it should 1) remain in
effect without change, 2) be changed to reflect the impact of new technologies or new

requirements, or 3) be retired or canceled.
The Technical Panel that developed this version of the standard consisted of the

following members:

Robert J. Hanisch, Chair Space Telescope Science Institute

William D. Pence, Secretary NASA Goddard Space Flight Center
Barry M. Schlesinger, Past Secretary Raytheon STX

Allen Farris Space Telescope Science Institute
Eric W. Greisen National Radio Astronomy Observatory

Peter J. Teuben University of Maryland
Randall W. Thompson Computer Sciences Corporation

Archibald Warnock A/WWW Enterprises

Members of the previous Technical Panels also included:
Lee E. Brotzman Hughes STX

Edward Kemper Hughes STX

Michael E. Van Steenberg NASA Goddard Space Flight Center

Wayne H. Warren Jr. Hughes STX

Richard A. White NASA Goddard Space Flight Center

This standard is published and maintained by the NOST. Send comments and

orders for NOST documents to:

FITS Standard

ii

NOST, Code 633.2, NASA Goddard Space Flight Center

Greenbelt MD 20771
USA

electronic mail: nost@nssdca.gsfc.nasa.gov
+1-301-286-3575

http://ssdoo.gsfc.nasa.gov/nost/

Other information about FITS can be obtained from the FITS Support Office. The

FITS Support Office can be contacted as follows:

FITS Support Office

Code 662, NASA Goddard Space Flight Center

Greenbelt MD 20771

USA

electronic mail: fits@fits.gsfc.nasa.gov
+1-301-286-4599

http://fits.gsfc.nasa.gov/

FITS Standard

CONTENTS iii

Contents

Introduction vii

1 Overview 1

1.1 Purpose . 1

1.2 Scope . 1

1.3 Applicability . 2

1.4 Organization of This Document . 2

2 References 5

3 Definitions, Acronyms, and Symbols 7

4 FITS File Organization 11

4.1 Overall . 11

4.2 Individual FITS Structures . 11

4.3 Primary Header and Data Array . 11

4.3.1 Primary Header . 12

4.3.2 Primary Data Array . 12

4.4 Extensions . 13

4.4.1 Requirements for Conforming Extensions 13

4.4.2 Standard Extensions . 13

4.4.3 Order of Extensions . 13

4.5 Special Records . 13

4.6 Physical Blocking . 14

4.6.1 Bitstream Devices . 14

4.6.2 Sequential Media . 14

5 Headers 15

5.1 Card Images . 15

5.1.1 Syntax . 15

5.1.2 Components . 15

FITS Standard

iv CONTENTS

5.2 Value . 16

5.2.1 Character String . 16

5.2.2 Logical . 17

5.2.3 Integer Number . 17

5.2.4 Real Floating Point Number . 17

5.2.5 Complex Integer Number . 18

5.2.6 Complex Floating Point Number 18

5.3 Units . 18

5.4 Keywords . 18

5.4.1 Mandatory Keywords . 18

5.4.2 Other Reserved Keywords . 21

5.4.3 Additional Keywords . 26

6 Data Representation 29

6.1 Characters . 29

6.2 Integers . 29

6.2.1 Eight-bit . 29

6.2.2 Sixteen-bit . 29

6.2.3 Thirty-two-bit . 29

6.2.4 Sixty-four-bit . 30

6.2.5 Unsigned Integers . 30

6.3 IEEE-754 Floating Point . 30

7 Random Groups Structure 31

7.1 Keywords . 31

7.1.1 Mandatory Keywords . 31

7.1.2 Reserved Keywords .. 33

7.2 Data Sequence . 34

7.3 Data Representation . 34

8 Standard Extensions 35

8.1 The ASCII Table Extension . 35

8.1.1 Mandatory Keywords . 35

8.1.2 Other Reserved Keywords . 37

8.1.3 Data Sequence . 38

8.1.4 Fields . 38

8.1.5 Entries . 38

8.2 Image Extension . 40

8.2.1 Mandatory Keywords . 40

8.2.2 Units . 41

8.2.3 Data Sequence . 41

FITS Standard

CONTENTS v

8.3 Binary Table Extension . 41

8.3.1 Mandatory Keywords . 41

8.3.2 Other Reserved Keywords . 44

8.3.3 Data Sequence . 46

8.3.4 Data Display . 49

8.3.5 Variable-Length Arrays . 50

9 Restrictions on Changes 55

Appendixes

A Formal Syntax of Card Images 57

B Proposed Binary Table Convention 61

B.1 <Substring Array= Convention . 61

C Implementation on Physical Media 65

C.1 Physical Properties of Media . 65

C.2 Labeling . 65

C.2.1 Tape . 65

C.2.2 Other Media . 65

C.3 FITS File Boundaries . 65

C.3.1 Magnetic Reel Tape . 65

C.3.2 Other Media . 66

C.4 Multiple Physical Volumes . 66

D Suggested Time Scale Specification 67

E Differences from IAU-endorsed Publications 71

F Summary of Keywords 79

G ASCII Text 81

H IEEE Floating Point Formats 83

H.1 Basic Formats . 83

H.1.1 Single . 83

H.1.2 Double . 84

H.2 Byte Patterns . 85

I Reserved Extension Type Names 87

FITS Standard

vi List of Figures

J NOST Publications 91

Index 93

List of Tables

5.1 Mandatory keywords for primary header. 19
5.2 Interpretation of valid BITPIX value. 20

5.3 Mandatory keywords in conforming extensions. 20

7.1 Mandatory keywords in primary header preceding random groups. . . . 32

8.1 Mandatory keywords in ASCII table extensions. 36
8.2 Valid TFORMn format values in TABLE extensions.. 37

8.3 Mandatory keywords in image extensions. 40
8.4 Mandatory keywords in binary table extensions. 42

8.5 Valid TFORMn data types in BINTABLE extensions.. 43
8.6 Valid TDISPn format values in BINTABLE extensions 45

F.1 Mandatory FITS keywords . 79

F.2 Reserved FITS keywords . 80
F.3 General Reserved FITS keywords . 80

G.1 ASCII character set . 82

H.1 Summary of Format Parameters . 84
H.2 IEEE Floating Point Formats . 86

I.1 Reserved Extension Type Names. 88

I.2 Status Codes . 89
I.3 Acronyms in List of Registered Extensions 89

J.1 NOST Publications . 91

List of Figures

4.1 Array data sequence . 12

H.1 Single Format. 84
H.2 Double Format. 85

FITS Standard

vii

Introduction

The Flexible Image Transport System (FITS) evolved out of the recognition that a

standard format was needed for transferring astronomical data from one installation to

another. The original form, or Basic FITS [1], was designed for the transfer of images

and consisted of a binary array, usually multidimensional, preceded by an ASCII text

header with information describing the organization and contents of the array.The FITS

concept was later expanded to accommodate more complex data formats.A new format

for image transfer, random groups, was defined [2] in which the data would consist of a

series of arrays, with each array accompanied by a set of associated parameters.These

formats were formally endorsed [3] by the International Astronomical Union (IAU) in
1982. Provisions for data structures other than simple arrays or groups were made later.

These structures appear in extensions, each consisting of an ASCII header followed
by the data whose organization it describes. A set of general rules governing such

extensions [4]and a particular extension, ASCII table [5], were endorsed by the IAU
General Assembly [6] in 1988. At the same General Assembly,an IAU FITS Working

Group (IAUFWG) was formed [7] under IAU Commission 5 (Astronomical Data) with
the mandate to maintain the existing FITS standards and to review, approve, and

maintain future extensions to FITS, recommended practices for FITS, implementations,
and the thesaurus of approved FITS keywords. In 1989, the IAUFWG approved a

formal agreement [8] for the representation of floating point numbers. In 1994, the
IAUFWG endorsed two additional extensions,the image extension [9] and the binary

table extension [10]. FITS was originally designed and defined for 9-track half-inch
magnetic tape. However, as improvements in technology have brought forward other

data storage and data distribution media, it has generally been agreed that the FITS

format is to be understood as a logical format and not defined in terms of the physical

characteristics of any particular data storage medium. In 1994, the IAUFWG adopted
a set of rules [11] governing the relation between the FITS logical record size and

the physical block size for sequential media and bitstream devices.The IAUFWG also
approved in 1997 an agreement [12] defining a new format for encoding the date and time

in the DATE, DATE-OBS, and other related DATExxxx keywords to correct the ambiguity
in the original DATE keyword format beginning in the year 2000.

FITS Standard

viii

FITS Standard

1

Section 1

Overview

An archival format must be utterly portable and self-describing, on the as-

sumption that, apart from the transcription device, neither the software nor

the hardware that wrote the data will be available when the data are read.

<Preserving Scientific Data on our Physical Universe,= p. 60.Steering Com-

mittee for the Study on the Long-Term Retention of Selected Scientific and
Technical Records of the Federal Government, [US] National Research Coun-

cil, National Academy Press 1995.

1.1 Purpose

This standard formally defines the FITS format for data structuring and exchange that

is to be used where applicable as defined in §1.3.It is intended as a formal codification
of the FITS format that has been endorsed by the IAU for transfer of astronomical

data, fully consistent with all actions and endorsements of the IAU and the IAU FITS

Working Group (IAUFWG). Minor ambiguities and inconsistencies in FITS as described

in the original papers are eliminated.

1.2 Scope

This standard specifies the organization and content of FITS data sets, including the

header and data, for all standard FITS formats: Basic FITS, the random groups struc-
ture, the ASCII table extension, the image extension, and the binary table extension.It

also specifies minimum structural requirements for new extensions and generalprinci-
ples governing the creation of new extensions.It specifies the relation between physical

block sizes and logical records for FITS files on bitstream devices and sequential media.
For headers, it specifies the proper syntax for card images and defines required and

reserved keywords. For data, it specifies character and value representations and the

FITS Standard

2 SECTION 1. OVERVIEW

ordering of contents within the byte stream. It defines the general rules to which new

extensions are required to conform.

1.3 Applicability

This standard describes an extensible data interchange format particularly well suited

for transport and archiving of arrays and tables of astronomical data. The IAU has
recommended that all astronomical computer facilities support FITS for the interchange

of binary data. It has been NASA policy for its astrophysics projects to make their data
available in FITS format. This standard may also be used to define the format for data

transport in other disciplines, as may be determined by the appropriate authorities.

1.4 Organization of This Document

§3 is a glossary of definitions, acronyms, and symbols.In §4, this document describes the

overall organization of a FITS file, the contents of the first (primary) header and data,
the rules for creating new FITS extensions, and the relation between physical block
sizes and logical records for FITS files on bitstream devices and sequential media.The

next two sections provide additional details on the header and data, with a particular
focus on the primary header. §5 provides details about header card image syntax and

specifies those keywords required and reserved in a primary header.§6 describes how
different data types are represented in FITS.The following sections describe the headers

and data of two standard FITS structures, the now deprecated random groups records
(§7) and the current standard extensions: ASCII table, image, and binary table (§8).

Throughout the document, deprecation of structures or syntax is noted where relevant.
Files containing deprecated features are valid FITS, but these features should not be

used in new files; the old files using them remain standard because of the principle that
no change in FITS shall cause a valid FITS file to become invalid.

The Appendixes contain material that is not part of the standard. The first, Ap-

pendix A, provides a formal expression of the keyword/value syntax for header card
images described in §5.2. Appendix B describes a convention for handling arrays of

substrings in binary table extensions. Appendix C describes aspects of the implemen-
tation of FITS on physical media not covered by the blocking agreement. Appendix

D is the appendix to the agreement endorsed by the IAUFWG for a new format for
keywords expressing dates.The new format uses a four-digit value for the year, and

thus eliminates any ambiguity in dates from the year 2000 and after. This appendix
is not part of the formal agreement. It contains a detailed discussion of time systems.

It has been slightly reformatted for stylistic compatibility with the remainder of this
document. Appendix E lists the differences between this standard and the specifications

of prior publications; it also identifies those ambiguities in the documents endorsed by

FITS Standard

1.4. ORGANIZATION OF THIS DOCUMENT 3

the IAU on which this standard provides specific rules. The next four appendixes pro-

vide reference information: a tabular summary of the FITS keywords (Appendix F),
a list of the ASCII character set and a subset designated ASCII text (Appendix G), a

description of the IEEE floating point format (Appendix H), and a list of the extension
type names that have been reserved as of the date this document was issued (Appendix

I). Appendix J is a list of NOST documents, including earlier versions of this standard.

FITS Standard

4 SECTION 1. OVERVIEW

FITS Standard

5

Section 2

References

1. Wells, D. C., Greisen, E. W., and Harten, R. H. 1981, <FITS : A Flexible Image

Transport System,= Astron. Astrophys. Suppl., 44 , 3633370.

2. Greisen, E. W. and Harten, R. H. 1981, <An Extension of FITS for Small Arrays

of Data,= Astron. Astrophys. Suppl., 44 , 3713374.

3. IAU. 1983, Information Bulletin No. 49.

4. Grosbøl, P., Harten, R. H., Greisen, E. W., and Wells, D. C. 1988, <Generalized

Extensions and Blocking Factors for FITS,= Astron. Astrophys. Suppl., 73 , 3593
364.

5. Harten, R. H., Grosbøl, P., Greisen, E. W., and Wells, D. C. 1988, <The FITS

Tables Extension,= Astron. Astrophys. Suppl., 73 , 3653372.

6. IAU. 1988, Information Bulletin No. 61.

7. McNally, D., ed. 1988, Transactions of the IAU, Proceedings ofthe Twentieth

General Assembly (Dordrecht: Kluwer).

8. Wells, D. C. and Grosbøl, P. 1990, <Floating Point Agreement for FITS,= (avail-

able electronically from ftp://nssdc.gsfc.nasa.gov/pub/fits/fp agree.ps).

9. Ponz, J. D., Thompson, R. W., and MuÞnoz, J. R. 1994, <The FITS Image Exten-

sion,= Astron. Astrophys. Suppl., 105 , 53355.

10. Cotton, W. D., Tody, D. B., and Pence, W. D. 1995, <Binary Table Extension to

FITS,= Astron. Astrophys. Suppl., 113 , 1593166.

11. Grosbøl, P. and Wells, D. C. 1994, <Blocking of Fixed-block Sequential Media
and Bitstream Devices,= (available electronically from FITS Support Office at

ftp://nssdc.gsfc.nasa.gov/pub/fits/blocking94.txt).

FITS Standard

6 SECTION 2. REFERENCES

12. Bunclark, P. and Rots, A. 1997, <Precise re-definition of DATE-OBS Keyword

encompassing the millennium,= (available electronically from
ftp://nssdc.gsfc.nasa.gov/pub/fits/year2000 agreement.txt).

13. ANSI. 1978, <American National Standard for Information Processing: Program-

ming Language FORTRAN,= ANSI X3.931978 (ISO 1539) (New York: American

National Standards Institute, Inc.).

14. ANSI. 1977, <American National Standard for Information Processing: Code for

Information Interchange,= ANSI X3.431977 (ISO 646) (New York: American Na-

tional Standards Institute, Inc.).

15. IEEE. 1985, <American National Standard 4 IEEE Standard for Binary Float-

ing Point Arithmetic=. ANSI/IEEE 75431985 (New York: American National
Standards Institute, Inc.).

16. Jennings, D. G., Pence, W. D., Folk, M., and Schlesinger, B. M, 1997, <A Hierar-
chical Grouping Convention for FITS,= preprint, available electronically from

http://fits.gsfc.nasa.gov/group.html .

17. <Going AIPS,= 1990, National Radio Astronomy Observatory, Charlottesville, VA.

18. MuÞnoz, J. R. <IUE data in FITS Format,= 1989, ESA IUE Newsletter, 32 , 12345.

FITS Standard

7

Section 3

Definitions, Acronyms, and

Symbols

 Used to designate an ASCII blank.

ANSI American National Standards Institute.

Array A sequence of data values. This sequence corresponds to the elements in a

rectilinear, n-dimension matrix (0 f n f 999).

Array value The value of an element of an array in a FITS file, without the application
of the associated linear transformation to derive the physical value.

ASCII American National Standard Code for Information Interchange.

ASCII blank The ASCII character for blank which is represented by hexadecimal 20
(decimal 32).

ASCII character Any member of the 7-bit ASCII character set.

ASCII NULL Hexadecimal 00.

ASCII text ASCII characters hexadecimal 2037E.

Basic FITS The FITS structure consisting of the primary header followed by a single
primary data array.

Bit A single binary digit.

Byte An ordered sequence of eight consecutive bits treated as a single entity.

Card image A sequence of 80 bytes containing ASCII text, treated as a logical entity.

FITS Standard

8 SECTION 3. DEFINITIONS, ACRONYMS, AND SYMBOLS

Conforming extension An extension whose keywords and organization adhere to the
requirements for conforming extensions defined in §4.4.1 of this standard.

DAT 4mm Digital Audio Tape.

Deprecated This term is used to refer to obsolete structures that should not be used
for new applications but remain valid.

Entry A single value in a table.

Extension A FITS HDU appearing after the primary HDU in a FITS file.

Extension name The identifier used to distinguish a particular extension HDU from
others of the same type, appearing as the value of the EXTNAME keyword.

Extension type An extension format.

Field A set of zero or more table entries collectively described by a single format.

File A sequence of one or more records terminated by an end-of-file indicator appro-
priate to the medium.

FITS Flexible Image Transport System.

FITS file A file with a format that conforms to the specifications in this document.

FITS structure One of the components of a FITS file:the primary HDU, the random
groups records, an extension, or, collectively, the special records following the last

extension.

Floating point A computer representation of a real number.

Fraction The field of the mantissa (or significand) of a floating point number that lies
to the right of its implied binary point.

Group parameter value The value ofone of the parameters preceding a group in

the random groups structure, without the application of the associated linear

transformation.

GSFC Goddard Space Flight Center.

HDU Header and Data Unit. A data structure consisting of a header and the data

the header describes.Note that an HDU may consist entirely of a header with no

data records.

Header A series of card images organized within one or more FITS logical records

that describes structures and/or data which follow it in the FITS file.

FITS Standard

9

Heap A supplemental data area, currently defined to follow the table in a binary table
extension.

IAU International Astronomical Union.

IAUFWG International Astronomical Union FITS Working Group.

IUE International Ultraviolet Explorer.

IEEE Institute of Electrical and Electronic Engineers.

IEEE NaN IEEE Not-a-Number value.

IEEE special values Floating point number byte patterns that have a special, re-

served meaning, such as 20, ±>, ±underflow, ±overflow, ±denormalized, ± NaN.
(See Appendix H).

Indexed keyword A keyword that is of the form of a fixed root with an appended

positive integer count.

Keyword The first eight bytes of a header card image.

Logical record A record comprising 2880 8-bit bytes.

Mandatory keyword A keyword that must be used in all FITS files or a keyword
required in conjunction with particular FITS structures.

Mantissa Also known as significand.The component of an IEEE floating point number

consisting of an explicit or implicit leading bit to the left of its implied binary point

and a fraction field to the right.

Matrix A data array of two or more dimensions.

NOST NASA/Science Office of Standards and Technology.

Physical value The value in physical units represented by an element of an array and
possibly derived from the array value using the associated, but optional, linear
transformation.

Picture element A single location within an array.

Pixel Picture element.

Primary data array The data array contained in the primary HDU.

Primary HDU The first HDU in a FITS file.

FITS Standard

10 SECTION 3. DEFINITIONS, ACRONYMS, AND SYMBOLS

Primary header The first header in a FITS file, containing information on the overall
contents of the file as well as on the primary data array.

Record A sequence of bits treated as a single logical entity.

Reference point The point along a given coordinate axis, given in units of pixel num-
ber, at which a value and increment are defined.

Repeat count The number of values represented in a binary table field.

Reserved keyword An optional keyword that may be used only in the manner defined
in this standard.

Special records A series of 23040-bit (2880 8-bit byte) records, following the primary
HDU, whose internal structure does not otherwise conform to that for the primary

HDU or to that specified for a conforming extension in this standard.

Standard extension A conforming extension whose header and data content are spec-
ified explicitly in this standard.

Type name The value of the XTENSION keyword,used to identify the type of the

extension in the data following.

Valid value A member of a data array or table corresponding to an actual physical

quantity.

FITS Standard

11

Section 4

FITS File Organization

4.1 Overall

A FITS file shall be composed of the following FITS structures, in the order listed:

" Primary HDU

" Conforming Extensions (optional)

" Other special records (optional)

Each FITS structure shall consist of an integral number of FITS logical records.

The primary HDU shall start with the first record of the FITS file. The first record
of each subsequent FITS structure shall be the record immediately following the last

record of the preceding FITS structure. The size of a FITS logical record shall be 23040
bits, corresponding to 2880 8-bit bytes.

4.2 Individual FITS Structures

The primary HDU and every extension HDU shall consist of an integral number of

header records consisting of ASCII text, which may be followed by an integral number
of data records. The first record of data shall be the record immediately following the

last record of the header.

4.3 Primary Header and Data Array

The first component of a FITS file shall be the primary header. The primary header

may, but need not be, followed by a primary data array. The presence or absence of a
primary data array shall be indicated by the values of the NAXIS or NAXISn keywords

in the primary header (§5.4.1.1).

FITS Standard

12 SECTION 4. FITS FILE ORGANIZATION

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,

A(NAXIS1, 1, . . . , 1),

A(1, 2, . . . , 1),

A(2, 2, . . . , 1),
...,

A(NAXIS1, 2, . . . , 1),
...,

A(1, NAXIS2, . . . , NAXISm),
...,

A(NAXIS1, NAXIS2, . . . , NAXISm)

Figure 4.1: Arrays of more than one dimension shall consist of a sequence such that the

index along axis 1 varies most rapidly and those along subsequent axes progressively
less rapidly. Except for the location of the first element, array structure is independent

of record structure.

4.3.1 Primary Header

The header of a primary HDU shall consist of a series of card images in ASCII text.All

header records shall consist of 36 card images.Card images without information shall

be filled with ASCII blanks (hexadecimal 20).

4.3.2 Primary Data Array

In FITS format, the primary data array shall consist of a single data array of 03999 di-

mensions.The random groups convention in the primary data array is a more compli-
cated structure (see §7). The data values shall be a byte stream with no embedded fill

or blank space. The first value shall be in the first position of the first primary data
array record. The first value of each subsequent row of the array shall be in the position

immediately following the last value of the previous row. Arrays of more than one di-
mension shall consist of a sequence such that the index along axis 1 varies most rapidly,

that along axis 2 next most rapidly, and those along subsequent axes progressively less
rapidly, with that along axis m, where m is the value of NAXIS, varying least rapidly; i.e.,

the elements of an array A(x 1, x2, . . . , xm) shall be in the order shown in Figure 4.1.
The index count along each axis shall begin with 1 and increment by 1 up to the value

of the NAXISn keyword (§5.4.1.1).

FITS Standard

4.4. EXTENSIONS 13

If the data array does not fill the final record, the remainder of the record shall be

filled by setting all bits to zero.

4.4 Extensions

4.4.1 Requirements for Conforming Extensions

All extensions, whether or not further described in this standard, shall fulfill the follow-

ing requirements to be in conformance with this FITS standard.

4.4.1.1 Identity

Each extension type shall have a unique type name, specified in the header according
to the syntax codified in §5.4.1.2. To preclude conflict, extension type names must be

registered with the IAUFWG. The FITS Support Office shall maintain and provide a
list of the registered extensions.

4.4.1.2 Size Specification

The total number of bits in the data of each extension shall be specified in the header

for that extension, in the manner prescribed in §5.4.1.2.

4.4.1.3 Compatibility with Existing FITS Files

No extension shall be constructed that invalidates existing FITS files.

4.4.2 Standard Extensions

A standard extension shall be a conforming extension whose organization and content

are completely specified in this standard. Only one FITS format shall be approved for
each type of data organization.Each standard extension shall have a unique name given

by the value of the XTENSION keyword (see Appendix I)

4.4.3 Order of Extensions

An extension may follow the primary HDU or another conforming extension. Standard
extensions and other conforming extensions may appear in any order in a FITS file.

4.5 Special Records

The first 8 bytes of special records must not contain the string <XTENSION=. It is rec-

ommended that they not contain the string <SIMPLE =. The records must have the

FITS Standard

14 SECTION 4. FITS FILE ORGANIZATION

standard FITS 23040-bit record length. The contents of special records are not other-

wise specified by this standard.

4.6 Physical Blocking

4.6.1 Bitstream Devices

For bitstream devices, including but not restricted to logical file systems, FITS files

shall be written with fixed blocks of a physical block size equal to the 23040-bit FITS

logical record size.

4.6.2 Sequential Media

4.6.2.1 Fixed Block

For fixed block length sequential media, including but not restricted to optical disks
(accessed as a sequential set of records), QIC format 1/4-inch cartridge tapes, and local

area networks,FITS files shall be written as a bitstream, using the fixed block size of
the medium. If the end of the last logical record does not coincide with the end of a

physical fixed block, all bits in the remainder of the physical block containing the last
logical record shall be set to zero. After an end-of-file mark has been detected in the
course of reading a FITS file, subsequent incomplete FITS logical records should be

disregarded.

4.6.2.2 Variable Block

For variable block length sequential media, including but not restricted to 1/2-inch 9-

track tapes, DAT 4 mm cartridge tapes, and 8 mm cartridge tapes, FITS files may be
written with an integer blocking factor equal to 1310 logical records per physical block.

FITS Standard

15

Section 5

Headers

5.1 Card Images

5.1.1 Syntax

Header card images shall consist of a keyword, a value indicator (optional unless a value
is present), a value (optional), and a comment (optional). Except where specifically

stated otherwise in this standard, keywords may appear in any order.

A formal syntax, giving a complete definition of the syntax of FITS card images,

is given in Appendix A. It is intended as an aid in interpreting the text defining the
standard.

5.1.2 Components

5.1.2.1 Keyword (bytes 138)

The keyword shall be a left justified, 8-character, blank-filled, ASCII string with no

embedded blanks.All digits (hexadecimal 30 to 39,<0123456789=) and upper case Latin
alphabetic characters (hexadecimal 41 to 5A, <ABCDEFG HIJKLMN OPQRST UVWXYZ=) are

permitted; no lower case characters shall be used. The underscore (hexadecimal5F,

< =) and hyphen (hexadecimal 2D, <-=) are also permitted. No other characters are

permitted. For indexed keywords with a single index the counter shall not have leading

zeroes.

5.1.2.2 Value Indicator (bytes 9310)

If this field contains the ASCII characters <= =, it indicates the presence of a value field

associated with the keyword, unless it is a commentary keyword as defined in §5.4.2.4.
If the value indicator is not present or if it is a commentary keyword then columns 9380

may contain any ASCII text.

FITS Standard

16 SECTION 5. HEADERS

5.1.2.3 Value/Comment (bytes 11380)

This field, when used, shall contain the value, if any, of the keyword, followed by optional
comments. The value field may be a null field; i.e., it may consist entirely of spaces. If

the value field is null, the value associated with the keyword is undefined.If a comment

is present, it must be preceded by a slash (hexadecimal 2F, </=). A space between

the value and the slash is strongly recommended. The value shall be the ASCII text

representation of a string or constant, in the format specified in §5.2. The comment

may contain any ASCII text.

5.2 Value

The structure of the value field shall be determined by the type of the variable.The value
field represents a single value and not an array of values.The value field must be in one of

two formats: fixed or free.The fixed format is required for values of mandatory keywords
and recommended for values of all others. This standard imposes no requirements on

case sensitivity of character strings other than those explicitly specified.

5.2.1 Character String

If the value is a fixed format character string, column 11 shall contain a single quote
(hexadecimalcode 27,<9=); the string shall follow, starting in column 12, followed by

a closing single quote (also hexadecimal code 27) that should not occur before column
20 and must occur in or before column 80.The character string shall be composed only

of ASCII text. A single quote is represented within a string as two successive single

quotes, e.g., O9HARA = 9O99HARA9. Leading blanks are significant; trailing blanks are

not.

Free format character strings follow the same rules as fixed format character strings

except that the starting and closing single quote characters may occur anywhere within

columns 11380. Any columns preceding the starting quote character and after column

10 must contain the space character.

Note that there is a subtle distinction between the following 3 keywords:

KEYWORD1= 99 / null string keyword
KEYWORD2= 9 9 / blank keyword

KEYWORD3= / undefined keyword

The value of KEYWORD1 is a null,or zero length string whereas the value of the
KEYWORD2 is a blank string (nominally a single blank character because the first blank

in the string is significant, but trailing blanks are not). The value of KEYWORD3 is
undefined and has an indeterminate datatype as well, except in cases where the data

type of the specified keyword is explicitly defined in this standard.

FITS Standard

5.2. VALUE 17

The maximum allowed length of a keyword string is 68 characters (with the opening

and closing quote characters in columns 11 and 80, respectively).In general, no length
limit less than 68 is implied for character-valued keywords.

5.2.2 Logical

If the value is a fixed format logical constant, it shall appear as a T or F in column 30.
A logical value is represented in free format by a single character consisting of T or

F. This character must be the first non-blank character in columns 11380. The only
characters that may follow this single character are spaces, or a slash followed by an

optional comment (see §5.1.2.3).

5.2.3 Integer Number

If the value is a fixed format integer, the ASCII representation shall be right justified in
columns 11330.An integer consists of a 8+9 (hexadecimal 2B) or 829 (hexadecimal 2D)

sign, followed by one or more ASCII digits (hexadecimal 30 to 39), with no embedded
spaces. The leading 8+9 sign is optional. Leading zeros are permitted, but are not

significant. The integer representation described here is always interpreted as a signed,
decimal number.

A free format integer value follows the same rules as fixed format integers except

that it may occur anywhere within columns 11380.

5.2.4 Real Floating Point Number

If the value is a fixed format real floating point number, the ASCII representation shall

appear, right justified, in columns 11330.

A floating point number is represented by a decimal number followed by an optional

exponent, with no embedded spaces.A decimal number consists of a 8+9 (hexadecimal

2B) or 8-9 (hexadecimal 2D) sign, followed by a sequence of ASCII digits containing

a single decimal point (8.9), representing an integer part and a fractional part of the
floating point number. The leading 8+9 sign is optional. At least one of the integer

part or fractional part must be present. If the fractional part is present, the decimal
point must also be present. If only the integer part is present, the decimal point may

be omitted. The exponent, if present, consists of an exponent letter followed by an
integer. Letters in the exponential form (8E9 or 8D9) shall be upper case. Note: The full

precision of 64-bit values cannot be expressed over the whole range of values using the
fixed format.

A free format floating point value follows the same rules as fixed format floating

point values except that it may occur anywhere within columns 11380.

FITS Standard

18 SECTION 5. HEADERS

5.2.5 Complex Integer Number

There is no fixed format for complex integer numbers.

If the value is a complex integer number, the value must be represented as a real
part and an imaginary part, separated by a comma and enclosed in parentheses.Spaces

may precede and follow the real and imaginary parts. The real and imaginary parts
are represented as integers (§5.2.3).Such a representation is regarded as a single value

for the complex integer number. This representation may be located anywhere within
columns 11380.

5.2.6 Complex Floating Point Number

There is no fixed format for complex floating point numbers.

If the value is a complex floating point number, the value must be represented as

a real part and an imaginary part, separated by a comma and enclosed in parentheses.

Spaces may precede and follow the realand imaginary parts. The real and imaginary

parts are represented as floating point values (§5.2.4).Such a representation is regarded

as a single value for the complex floating point number. This representation may be

located anywhere within columns 11380.

5.3 Units

The units of all FITS header keyword values, with the exception of measurements
of angles, should conform with the recommendations in the IAU Style Manual [7].

For angular measurements given as floating point values and specified with reserved
keywords, degrees are the recommended units (with the units, if specified, given as

9deg9).

5.4 Keywords

5.4.1 Mandatory Keywords

Mandatory keywords are required in every HDU as described in the remainder of this

subsection.They may be used only as described in this standard.Values of the manda-
tory keywords must be written in fixed format.

5.4.1.1 Principal

The SIMPLE keyword is required to be the first keyword in the primary header of all
FITS files. Principal mandatory keywords other than SIMPLE are required in all FITS

headers. The card images of any primary header must contain the keywords shown in

FITS Standard

5.4. KEYWORDS 19

Table 5.1 in the order given. No other keywords may intervene between the SIMPLE

keyword and the last NAXISn keyword.

1 SIMPLE

2 BITPIX
3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...

(other keywords)
...

last END

Table 5.1: Mandatory keywords for primary header.

The total number of bits in the primary data array, exclusive of fill that is needed
after the data to complete the last record (§4.3.2), is given by the following expression:

Nbits = |BITPIX| × (NAXIS1 × NAXIS2 × · · · × NAXISm), (5.1)

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,

and BITPIX and the NAXISn represent the values associated with those keywords.

SIMPLE Keyword The value field shall contain a logical constant with the value T if
the file conforms to this standard. This keyword is mandatory for the primary header

and is not permitted in extension headers. A value of F signifies that the file does not
conform to this standard.

BITPIX Keyword The value field shall contain an integer. The absolute value is

used in computing the sizes of data structures. It shall specify the number of bits that
represent a data value.The only valid values of BITPIX are given in Table 5.2.

NAXIS Keyword The value field shall contain a non-negative integer no greater than

999, representing the number of axes in the associated data array. A value of zero
signifies that no data follow the header in the HDU.

NAXISn Keywords The value field of this indexed keyword shall contain a non-
negative integer, representing the number of elements along axis n of a data array.

The NAXISn must be present for all values n = 1,...,NAXIS, and for no other values
of n. A value of zero for any of the NAXISn signifies that no data follow the header in

the HDU. If NAXIS is equal to 0, there should not be any NAXISn keywords.

FITS Standard

20 SECTION 5. HEADERS

Value Data Represented

8 Character or unsigned binary integer

16 16-bit twos-complement binary integer
32 32-bit twos-complement binary integer

64 64-bit twos-complement binary integer
-32 IEEE single precision floating point

-64 IEEE double precision floating point

Table 5.2: Interpretation of valid BITPIX value.

END Keyword This keyword has no associated value. Columns 9380 shall be filled
with ASCII blanks.

5.4.1.2 Conforming Extensions

All conforming extensions must use the keywords defined in Table 5.3 in the order

specified. No other keywords may intervene between the XTENSION keyword and the last

NAXISn keyword.This organization is required for any conforming extension, whether

or not further specified in this standard.

1 XTENSION

2 BITPIX
3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...

(other keywords, including . . .)
PCOUNT

GCOUNT
...

last END

Table 5.3: Mandatory keywords in conforming extensions.

The total number of bits in the extension data array exclusive of fill that is needed

after the data to complete the last record such as that for the primary data array (§4.3.2)
is given by the following expression:

Nbits = |BITPIX| × GCOUNT ×

FITS Standard

5.4. KEYWORDS 21

(PCOUNT + NAXIS1 × NAXIS2 × · · · × NAXISm), (5.2)

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,

and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated with those
keywords.

XTENSION Keyword The value field shall contain a character string giving the name
of the extension type. This keyword is mandatory for an extension header and must

not appear in the primary header. For an extension that is not a standard extension,
the type name must not be the same as that of a standard extension.

The IAUFWG may specify additional type names that must be used only to identify

specific types of extensions; the full list shall be available from the FITS Support Office.

PCOUNT Keyword The value field shall contain an integer that shall be used in any

way appropriate to define the data structure, consistent with Eq. 5.2.

GCOUNT Keyword The value field shall contain an integer that shall be used in any

way appropriate to define the data structure, consistent with Eq. 5.2.

EXTEND Keyword The use of extensions necessitates a single additional keyword in the

primary header of the FITS file. If the FITS file may contain extensions, a card image

with the keyword EXTEND and the value field containing the logical value T must appear

in the primary header immediately after the last NAXISn card image, or, if NAXIS=0,

the NAXIS card image. The presence of this keyword with the value T in the primary
header does not require that extensions be present.

5.4.2 Other Reserved Keywords

These keywords are optionalbut may be used only as defined in this standard. They

apply to any FITS structure with the meanings and restrictions defined below. Any
FITS structure may further restrict the use of these keywords.

5.4.2.1 Keywords Describing the History or Physical Construction of the

HDU

DATE Keyword Starting January 1, 2000, the following format shall be used. FITS

writers should commence writing the value of the DATE keyword in this format starting
January 1, 1999 and before January 1,2000. The value field shall contain a character

string giving the date on which the HDU was created, in the form YYYY-MM-DD, or the
date and time when the HDU was created, in the form YYYY-MM-DDThh:mm:ss[.sss. . .],

where YYYY shall be the four-digit calendar year number, MM the two-digit month number

FITS Standard

22 SECTION 5. HEADERS

with January given by 01 and December by 12, and DD the two-digit day of the month.

When both date and time are given, the literal T shall separate the date and time,
hh shall be the two-digit hour in the day, mm the two-digit number of minutes after

the hour, and ss[.sss. . .] the number of seconds (two digits followed by an optional
fraction) after the minute. No fields may be defaulted and no leading zeroes omitted.

The decimal part of the seconds field is optional and may be arbitrarily long, so long as
it is consistent with the rules for value formats of §5.2.

The value of the DATE keyword shall always be expressed in UTC when in this

format, for all data sets created on earth.

The following format may appear on files written before January 1, 2000.The value

field contains a character string giving the date on which the HDU was created, in the

form DD/MM/YY, where DD is the day of the month, MM the month number with January

given by 01 and December by 12, and YY the last two digits of the year, the first two

digits being understood to be 19. Specification of the date using Universal Time is

recommended but not assumed.

Copying of a FITS file does not require changing any of the keyword values in the
file9s HDUs.

ORIGIN Keyword The value field shall contain a character string identifying the or-
ganization or institution responsible for creating the FITS file.

BLOCKED Keyword This keyword may be used only in the primary header. It shall

appear within the first 36 card images of the FITS file. (Note: This keyword thus

cannot appear if NAXIS is greater than 31, or if NAXIS is greater than 30 and the EXTEND

keyword is present.) Its presence with the required logical value of T advises that the

physical block size of the FITS file on which it appears may be an integral multiple of

the logical record length, and not necessarily equal to it.Physical block size and logical

record length may be equal even if this keyword is present or unequal if it is absent.

It is reserved primarily to prevent its use with other meanings. Since the issuance of

version 1 of this standard, the BLOCKED keyword has been deprecated.

5.4.2.2 Keywords Describing Observations

DATE-OBS Keyword The format of the value field for DATE-OBS keywords shall follow

the prescriptions for the DATE keyword (§5.4.2.1).Either the 4-digit year format or the
2-digit year format may be used for observation dates from 1900 through 1999 although

the 4-digit format is preferred.

When the format with a four-digit year is used, the default interpretations for time

shall be UTC for dates beginning 1972-01-01 and UT before.Other date and time scales
are permissible. The value of the DATE-OBS keyword shall be expressed in the principal

time system or time scale of the HDU to which it belongs; if there is any chance of

FITS Standard

5.4. KEYWORDS 23

ambiguity, the choice shall be clarified in comments. The value of DATE-OBS shallbe

assumed to refer to the start of an observation, unless another interpretation is clearly
explained in the comment field. Explicit specification of the time scale is recommended.

By default, times for TAI and times that run simultaneously with TAI, e.,g., UTC and
TT, will be assumed to be as measured at the detector (or, in practical cases,at the

observatory). For coordinate times such as TCG, TCB, and TDB which are tied to
an unambiguous coordinate system, the default shall be time as if the observation had
taken place at the origin of the coordinate time system. Conventions may be developed

that use other time systems. Appendix D of this document contains the appendix to
the agreement on a four digit year, which discusses time systems in some detail.

When the value of DATE-OBS is expressed in the two-digit year form, allowed for files

written before January 1, 2000 with a year in the range 1900-1999, there is no default
assumption as to whether it refers to the start, middle or end of an observation.

DATExxxx Keywords The value fields for all keywords beginning with the string DATE
whose value contains date, and optionally time, information shall follow the prescriptions

for the DATE-OBS keyword.

TELESCOP Keyword The value field shall contain a character string identifying the

telescope used to acquire the data associated with the header.

INSTRUME Keyword The value field shall contain a character string identifying the
instrument used to acquire the data associated with the header.

OBSERVER KeywordThe value field shall contain a character string identifying who

acquired the data associated with the header.

OBJECT Keyword The value field shall contain a character string giving a name for

the object observed.

EQUINOX Keyword The value field shall contain a floating point number giving the
equinox in years for the celestial coordinate system in which positions are expressed.

EPOCH Keyword The value field shall contain a floating point number giving the
equinox in years for the celestial coordinate system in which positions are expressed.

Starting with Version 1, this standard has deprecated the use of the EPOCH keyword
and thus it shall not be used in FITS files created after the adoption of this standard;

rather, the EQUINOX keyword shall be used.

FITS Standard

24 SECTION 5. HEADERS

5.4.2.3 Bibliographic Keywords

AUTHOR Keyword The value field shall contain a character string identifying who

compiled the information in the data associated with the header. This keyword is
appropriate when the data originate in a published paper or are compiled from many

sources.

REFERENC KeywordThe value field shall contain a character string citing a reference
where the data associated with the header are published.

5.4.2.4 Commentary Keywords

COMMENT KeywordThis keyword shall have no associated value;columns 9380 may

contain any ASCII text. Any number of COMMENT card images may appear in a header.

HISTORY Keyword This keyword shall have no associated value;columns 9380 may

contain any ASCII text. The text should contain a history of steps and procedures

associated with the processing of the associated data. Any number of HISTORY card

images may appear in a header.

Keyword Field is Blank Columns 138 contain ASCII blanks. Columns 9380 may
contain any ASCII text. Any number of card images with blank keyword fields may

appear in a header.

5.4.2.5 Array Keywords

These keywords are used to describe the contents of an array, either alone or in a series

of random groups (§7). They are optional, but if they appear in the header describing
an array or groups, they must be used as defined in this section of this standard.They

shall not be used in headers describing other structures unless the meaning is the same
as that for a primary or groups array.

BSCALE Keyword This keyword shall be used, along with the BZERO keyword,when

the array pixel values are not the true physical values,to transform the primary data
array values to the true physical values they represent,using Eq. 5.3. The value field

shall contain a floating point number representing the coefficient of the linear term in
the scaling equation, the ratio of physical value to array value at zero offset.The default

value for this keyword is 1.0.

FITS Standard

5.4. KEYWORDS 25

BZERO Keyword This keyword shall be used, along with the BSCALE keyword,when

the array pixel values are not the true physical values,to transform the primary data
array values to the true values. The value field shall contain a floating point number

representing the physical value corresponding to an array value of zero. The default
value for this keyword is 0.0.

The transformation equation is as follows:

physical value = BZERO + BSCALE × array value (5.3)

BUNIT Keyword The value field shall contain a character string, describing the phys-

ical units in which the quantities in the array, after application of BSCALE and BZERO,
are expressed.These units must follow the prescriptions of §5.3.

BLANK Keyword This keyword shall be used only in headers with positive values of
BITPIX (i.e., in arrays with integer data). Columns 138 contain the string, <BLANK =

(ASCII blanks in columns 638). The value field shall contain an integer that specifies
the representation of array values whose physical values are undefined.

CTYPEn Keywords The value field shall contain a character string, giving the name
of the coordinate represented by axis n.

CRPIXn Keywords The value field shall contain a floating point number, identifying
the location of a reference point along axis n, in units of the axis index. This value is

based upon a counter that runs from 1 to NAXISn with an increment of 1 per pixel.The
reference point value need not be that for the center of a pixel nor lie within the actual

data array. Use comments to indicate the location of the index point relative to the
pixel.

CRVALn Keywords The value field shall contain a floating point number, giving the
value of the coordinate specified by the CTYPEn keyword at the reference point CRPIXn.

Units must follow the prescriptions of §5.3.

CDELTn Keywords The value field shall contain a floating point number giving the

partial derivative of the coordinate specified by the CTYPEn keywords with respect to the
pixel index, evaluated at the reference point CRPIXn, in units of the coordinate specified

by the CTYPEn keyword.These units must follow the prescriptions of §5.3.

CROTAn Keywords This keyword is used to indicate a rotation from a standard co-

ordinate system described by the CTYPEn to a different coordinate system in which the

FITS Standard

26 SECTION 5. HEADERS

values in the array are actually expressed.Rules for such rotations are not further spec-

ified in this standard; the rotation should be explained in comments. The value field
shall contain a floating point number giving the rotation angle in degrees between axis

n and the direction implied by the coordinate system defined by CTYPEn.

DATAMAX Keyword The value field shall always contain a floating point number, re-
gardless of the value of BITPIX. This number shall give the maximum valid physical

value represented by the array, exclusive of any special values.

DATAMIN Keyword The value field shall always contain a floating point number, re-

gardless of the value of BITPIX. This number shall give the minimum valid physical

value represented by the array, exclusive of any special values.

5.4.2.6 Extension Keywords

These keywords are used to describe an extension and should not appear in the primary

header.

EXTNAME Keyword The value field shall contain a character string, to be used to
distinguish among different extensions of the same type, i.e., with the same value of

XTENSION, in a FITS file.

EXTVER Keyword The value field shall contain an integer, to be used to distinguish
among different extensions in a FITS file with the same type and name, i.e., the same

values for XTENSION and EXTNAME. The values need not start with 1 for the first extension
with a particular value of EXTNAME and need not be in sequence for subsequent values.

If the EXTVER keyword is absent, the file should be treated as if the value were 1.

EXTLEVEL Keyword The value field shall contain an integer, specifying the level in a

hierarchy of extension levels of the extension header containing it.The value shall be 1

for the highest level; levels with a higher value of this keyword shall be subordinate to

levels with a lower value. If the EXTLEVEL keyword is absent, the file should be treated

as if the value were 1.

5.4.3 Additional Keywords

5.4.3.1 Requirements

New keywords may be devised in addition to those described in this standard, so long
as they are consistent with the generalized rules for keywords and do not conflict with

mandatory or reserved keywords.

FITS Standard

5.4. KEYWORDS 27

5.4.3.2 Restrictions

No keyword in the primary header shall specify the presence of a specific extension in a
FITS file; only the EXTEND keyword described in §5.4.1.2 shall be used to indicate the

possible presence of extensions.No keyword in either the primary or extension header
shall explicitly refer to the physical block size, other than the deprecated BLOCKED

keyword of §5.4.2.1.

FITS Standard

28 SECTION 5. HEADERS

FITS Standard

29

Section 6

Data Representation

Primary and extension data shall be represented in one of the formats described in this
section. FITS data shall be interpreted to be a byte stream. Bytes are in order of

decreasing significance.The byte that includes the sign bit shall be first, and the byte
that has the ones bit shall be last.

6.1 Characters

Each character shall be represented by one byte.A character shall be represented by its

7-bit ASCII [14] code in the low order seven bits in the byte. The high-order bit shall
be zero.

6.2 Integers

6.2.1 Eight-bit

Eight-bit integers shall be unsigned binary integers, contained in one byte.

6.2.2 Sixteen-bit

Sixteen-bit integers shall be twos-complement signed binary integers, contained in two
bytes.

6.2.3 Thirty-two-bit

Thirty-two-bit integers shall be twos-complement signed binary integers,contained in

four bytes.

FITS Standard

30 SECTION 6. DATA REPRESENTATION

6.2.4 Sixty-four-bit

Sixty-four-bit integers shall be twos-complement signed binary integers, contained in
eight bytes.

6.2.5 Unsigned Integers

Unsigned sixteen-bit integers can be represented in FITS files by subtracting 32768

from each value (thus offsetting the values into the range of a signed sixteen-bit integer)
before writing them to the FITS file. The BZERO keyword (or the TZEROn keyword

in the case of binary table columns with TFORMn = 9I9) must also be included in the
header with its value set to 32768 so that FITS reading software will add this offset

to the raw values in the FITS file, thus restoring them to the original unsigned integer
values. Unsigned thirty-two-bit integers can be represented in FITS files in a similar way

by applying an offset of 2147483648 (231) to the data values. Unsigned sixty-four-bit
integers can be represented in FITS files by applying an offset of 9223372036854775808

(263) to the data values.

6.3 IEEE-754 Floating Point

Transmission of 32- and 64-bit floating point data within the FITS format shall use

the ANSI/IEEE-754 standard [15]. BITPIX = -32 and BITPIX = -64 signify 32- and
64-bit IEEE floating point numbers, respectively; the absolute value of BITPIX is used

for computing the sizes of data structures.The full IEEE set of number forms is allowed
for FITS interchange, including all special values.

The BLANK keyword should not be used when BITPIX = -32 or -64; rather, the

IEEE NaN should be used to represent an undefined value. Use of the BSCALE and

BZERO keywords is not recommended.

Appendix H has additional details on the IEEE format.

FITS Standard

31

Section 7

Random Groups Structure

Although it is standard FITS, the random groups structure has been used almost exclu-
sively for applications in radio interferometry; outside this field, few FITS readers can

read data in random groups format.The binary table extension (§8.3) can accommodate
the structure described by random groups. While existing FITS files use the format,

and it is therefore included in this standard, its use for future applications has been
deprecated since the issue of Version 1 of this standard.Use of the word <deprecated=

is understood to mean that binary table extensions should be used in new astronomi-
cal application areas instead of the random groups format where either is appropriate

and where there is no historical precedent for random groups. Existing applications of
the random groups structure (almost exclusively interferometry) may continue to use

random groups as needed indefinitely;

7.1 Keywords

7.1.1 Mandatory Keywords

The SIMPLE keyword is required to be the first keyword in the primary header of all
FITS files, including those with random groups records. If the random groups format

records follow the primary header, the card images of the primary header must use the
keywords defined in Table 7.1 in the order specified.No other keywords may intervene
between the SIMPLE keyword and the last NAXISn keyword.

The total number of bits in the random groups records exclusive of the fill described
in §7.2 is given by the following expression:

Nbits = |BITPIX| × GCOUNT ×

(PCOUNT + NAXIS2 × NAXIS3 × · · · × NAXISm), (7.1)

FITS Standard

32 SECTION 7. RANDOM GROUPS STRUCTURE

1 SIMPLE

2 BITPIX
3 NAXIS

4 NAXIS1
5 NAXISn, n=2, . . . , value of NAXIS

...

(other keywords, which must include . . .)

GROUPS

PCOUNT

GCOUNT
...

last END

Table 7.1: Mandatory keywords in primary header preceding random groups.

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,
and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated with those

keywords.

7.1.1.1 SIMPLE Keyword

The card image containing this keyword is structured in the same way as if a primary

data array were present (§5.4.1).

7.1.1.2 BITPIX Keyword

The card image containing this keyword is structured as prescribed in §5.4.1.

7.1.1.3 NAXIS Keyword

The value field shall contain an integer ranging from 1 to 999, representing one more

than the number of axes in each data array.

7.1.1.4 NAXIS1 Keyword

The value field shall contain the integer 0, a signature of random groups format indi-

cating that there is no primary data array.

FITS Standard

7.1. KEYWORDS 33

7.1.1.5 NAXISn Keywords (n=2, . . . , value of NAXIS)

The value field shall contain an integer, representing the number of positions along axis

n-1 of the data array in each group.

7.1.1.6 GROUPS Keyword

The value field shall contain the logical constant T. The value T associated with this
keyword implies that random groups records are present.

7.1.1.7 PCOUNT Keyword

The value field shall contain an integer equal to the number of parameters preceding

each array in a group.

7.1.1.8 GCOUNT Keyword

The value field shall contain an integer equal to the number of random groups present.

7.1.1.9 END Keyword

The card image containing this keyword is structured as described in §5.4.1.

7.1.2 Reserved Keywords

7.1.2.1 PTYPEn Keywords

The value field shall contain a character string giving the name of parameter n. If the

PTYPEn keywords for more than one value of n have the same associated name in the value
field, then the data value for the parameter of that name is to be obtained by adding the

derived data values of the corresponding parameters.This rule provides a mechanism
by which a random parameter may have more precision than the accompanying data

array elements; for example, by summing two 16-bit values with the first scaled relative
to the other such that the sum forms a number of up to 32-bit precision.

7.1.2.2 PSCALn Keywords

This keyword shall be used, along with the PZEROn keyword, when the nth FITS group

parameter value is not the true physical value, to transform the group parameter value
to the true physical values it represents, using Eq. 7.2. The value field shall contain

a floating point number representing the coefficient of the linear term in Eq. 7.2, the
scaling factor between true values and group parameter values at zero offset.The default

value for this keyword is 1.0.

FITS Standard

34 SECTION 7. RANDOM GROUPS STRUCTURE

7.1.2.3 PZEROn Keywords

This keyword shall be used, along with the PSCALn keyword, when the nth FITS group
parameter value is not the true physical value, to transform the group parameter value

to the physical value. The value field shall contain a floating point number, representing
the true value corresponding to a group parameter value of zero.The default value for

this keyword is 0.0. The transformation equation is as follows:

physical value = PZEROn + PSCALn × group parameter value (7.2)

7.2 Data Sequence

Random groups data shall consist of a set of groups. The number of groups shall be
specified by the GCOUNT keyword in the associated header record.Each group shall

consist of the number of parameters specified by the PCOUNT keyword followed by an
array with the number of elements N elem given by the following expression:

Nelem = (NAXIS2 × NAXIS3 × · · · × NAXISm), (7.3)

where Nelem is the number of elements in the data array in a group, m is the value of

NAXIS, and the NAXISn represent the values associated with those keywords.

The first parameter of the first group shall appear in the first location of the first

data record. The first element of each array shall immediately follow the last parameter

associated with that group. The first parameter of any subsequent group shall imme-

diately follow the last element of the array of the previous group. The arrays shall be

organized internally in the same way as an ordinary primary data array. If the groups

data do not fill the final record, the remainder of the record shall be filled with zero

values in the same way as a primary data array (§4.3.2). If random groups records are

present, there shall be no primary data array.

7.3 Data Representation

Permissible data representations are those listed in §6. Parameters and elements of

associated data arrays shall have the same representation. Should more precision be
required for an associated parameter than for an element of a data array, the parameter

shall be divided into two or more addends, represented by the same value for the PTYPEn
keyword. The value shall be the sum of the physical values, which may have been

obtained from the group parameter values using the PSCALn and PZEROn keywords.

FITS Standard

35

Section 8

Standard Extensions

8.1 The ASCII Table Extension

Data shall appear as an ASCII table extension if the primary header of the FITS file

has the keyword EXTEND set to T and the first keyword of that extension header has

XTENSION= 9TABLE 9.

8.1.1 Mandatory Keywords

The header of an ASCII table extension must use the keywords defined in Table 8.1.

The first keyword must be XTENSION; the seven keywords following XTENSION (BITPIX
. . . TFIELDS) must be in the order specified with no intervening keywords.

XTENSION Keyword The value field shall contain the character string value text

9TABLE 9.

BITPIX Keyword The value field shall contain the integer 8, denoting that the array

contains ASCII characters.

NAXIS Keyword The value field shall contain the integer 2, denoting that the included

data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the
number of ASCII characters in each row of the table.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the

number of rows in the table.

FITS Standard

36 SECTION 8. STANDARD EXTENSIONS

1 XTENSION

2 BITPIX
3 NAXIS

4 NAXIS1
5 NAXIS2

6 PCOUNT
7 GCOUNT

8 TFIELDS
...

(other keywords, which must include . . .)

TBCOLn, n=1, 2, . . . , k where k is the value of TFIELDS

TFORMn, n=1, 2, . . . , k where k is the value of TFIELDS
...

last END

Table 8.1: Mandatory keywords in ASCII table extensions.

PCOUNT Keyword The value field shall contain the integer 0.

GCOUNT KeywordThe value field shall contain the integer 1; the data records contain

a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing
the number of fields in each row. The maximum permissible value is 999.

TBCOLn Keywords The value field of this indexed keyword shall contain an integer

specifying the column in which field n starts. The first column of a row is numbered 1.

TFORMn Keywords The value field of this indexed keyword shall contain a character
string describing the format in which field n is encoded. Only the formats in Table 8.2,

interpreted as ANSI FORTRAN-77 [13] input formats and discussed in more detail in
§8.1.5, are permitted for encoding.Format codes must be specified in upper case.Other

format editing codes common to ANSI FORTRAN-77 such as repetition, positional
editing, scaling, and field termination are not permitted. All values in numeric fields

have a number base of ten (i.e., they are decimal); binary, octal, hexadecimal, and other
representations are not permitted.

END Keyword This keyword has no associated value. Columns 9380 shall contain

ASCII blanks.

FITS Standard

8.1. THE ASCII TABLE EXTENSION 37

Field Value Data Type

Aw Character

Iw Decimal integer
Fw.d Single precision real

Ew.d Single precision real, exponential notation
Dw.d Double precision real, exponential notation

Table 8.2: Valid TFORMn format values in TABLE extensions.

8.1.2 Other Reserved Keywords

In addition to the mandatory keywords defined in §8.1.1, the following keywords may

be used to describe the structure of an ASCII table data array. They are optional, but
if they appear within an ASCII table extension header, they must be used as defined in

this section of this standard.

TSCALn Keywords This indexed keyword shall be used,along with the TZEROn key-
word, when the quantity in field n does not represent a true physical quantity. The

value field shall contain a floating point number representing the coefficient of the linear
term in Eq. 8.1, which must be used to compute the true physical value of the field.

The default value for this keyword is 1.0. This keyword may not be used for A-format
fields.

TZEROn Keywords This indexed keyword shall be used,along with the TSCALn key-

word, when the quantity in field n does not represent a true physical quantity. The

value field shall contain a floating point number representing the zero point for the true

physical value of field n. The default value for this keyword is 0.0. This keyword may

not be used for A-format fields.

The transformation equation used to compute a true physical value from the quantity

in field n is

physical value = TZEROn + TSCALn × field value. (8.1)

TNULLn Keywords The value field for this indexed keyword shall contain the character

string that represents an undefined value for field n.The string is implicitly blank filled

to the width of the field.

TTYPEn Keywords The value field for this indexed keyword shall contain a character

string, giving the name of field n. It is recommended that only letters, digits, and

FITS Standard

38 SECTION 8. STANDARD EXTENSIONS

underscore (hexadecimalcode 5F, < =) be used in the name. String comparisons with

the values of TTYPEn keywords should not be case sensitive.The use of identical names
for different fields should be avoided.

TUNITn Keywords The value field shall contain a character string describing the

physical units in which the quantity in field n, after any application of TSCALn and
TZEROn, is expressed.Units must follow the prescriptions in §5.3.

8.1.3 Data Sequence

The table is constructed from a two-dimensional array of ASCII characters. The row
length and the number of rows shall be those specified, respectively, by the NAXIS1 and

NAXIS2 keywords of the associated header records.The number of characters in a row
and the number of rows in the table shall determine the size of the character array.

Every row in the array shall have the same number of characters. The first character
of the first row shall be at the start of the record immediately following the last header

record. The first character of subsequent rows shall follow immediately the character at
the end of the previous row, independent of the record structure. The positions in the

last data record after the last character of the last row of the data array shall be filled
with ASCII blanks.

8.1.4 Fields

Each row in the array shall consist of a sequence of fields, with one entry in each field.

For every field, the ANSI FORTRAN-77 format of the information contained, location in
the row of the beginning of the field and (optionally) the field name, shall be specified in

keywords of the associated header records.A separate format keyword must be provided
for each field. The location and format of fields shall be the same for every row. Fields

may overlap. There may be characters in a table row that are not included in any field.

8.1.5 Entries

All data in an ASCII table extension field shall be ASCII text in a format that conforms
to the rules for fixed field input in ANSI FORTRAN-77 [13] format, as described below,

including implicit decimal points. The only possible formats shall be those specified in
Table 8.2. If values of -0 and +0 must be distinguished, then the sign character should

appear in a separate field in character format.TNULLn keywords may be used to specify
a character string that represents an undefined value in each field. The characters

representing an undefined value may differ from field to field but must be the same
within a field. Writers of ASCII tables should select a format appropriate to the form,

range of values, and accuracy of the data in the table.

FITS Standard

8.1. THE ASCII TABLE EXTENSION 39

The value of a character-formatted (Aw) field is a character string of width w con-

taining the characters in columns TBCOLn through TBCOLn+w 2 1.
The value of an integer-formatted (Iw) field is an integer number determined by

removing all blanks from columns TBCOLn through TBCOLn+w 2 1 and interpreting the
remaining, right-justified characters as a signed decimal integer.A blank field has value

0. All characters other than blanks, the decimal integers (<0= through <9=) and a single
leading sign character (<+= and <-=) are forbidden.

The value of a real-formatted field (Fw.d, Ew.d, Dw.d) is a real number determined

from the w characters from columns TBCOLn through TBCOLn+w 2 1.The value is formed
by

1. discarding all blank characters and right-justifying the non-blank characters,

2. interpreting the first non-blank characters as a numeric string consisting of a single

optional sign (<+= or <-=) followed by one or more decimal digits (<0= through

<9=) optionally containing a single decimal point (<.=). The numeric string is

terminated by the end of the right-justified field or by the occurrence of any

character other than a decimal point (<.=) and the decimal integers (<0= through

<9=). If the string contains no explicit decimal point, then the implicit decimal

point is taken as immediately preceding the rightmost d digits of the string, with
leading zeros assumed if necessary.

3. if the numeric string is terminated by a

(a) <+= or <-=, interpreting the following string as an exponent in the form of a

signed decimal integer, or

(b) <E=, or <D=, interpreting the following string as an exponent of the form E or
D followed by an optionally signed decimal integer constant.

4. The exponent string, if present, is terminated by the end of the right-justified

string.

5. Characters other than those specified above are forbidden.

The numeric value of the table field is then the value of the numeric string multi-

plied by ten (10) to the power of the exponent string, i.e., value = numeric string ×

10(exponent string) . The default exponent is zero and a blankfield has value zero.There is

no difference between the F, D, and E formats;the content of the string determines its
interpretation. Numbers requiring more precision and/or range than the local computer

can support may be represented. It is good form to specify a D format in TFORMn for
a column of an ASCII table when that column will contain numbers that cannot be

accurately represented in 32-bit IEEE binary format (see Appendix H).
Note that the above definitions allow for embedded blanks anywhere in integer-

formatted and real-formatted fields and implicit decimal points in real-formatted fields.

FITS Standard

40 SECTION 8. STANDARD EXTENSIONS

FITS reading tasks will have to honor these flexibilities.However, since these flexibilities

are likely to cause confusion and possible misinterpretation, it is recommended that
FITS writing tasks write tables with explicit decimal points and no embedded or trailing

blanks whenever possible.

8.2 Image Extension

Data shall appear as an image extension if the primary header of the FITS file has the

keyword EXTEND set to T and the first keyword of that extension header has
XTENSION= 9IMAGE 9.

8.2.1 Mandatory Keywords

The XTENSION keyword is required to be the first keyword of all image extensions.

The card images in the header of an image extension must use the keywords defined in
Table 8.3 in the order specified.No other keywords may intervene between the XTENSION

and GCOUNT keywords.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS

5 PCOUNT
6 GCOUNT

...
(other keywords . . .)
...

last END

Table 8.3: Mandatory keywords in image extensions.

XTENSION Keyword The value field shall contain the character string value text
9IMAGE 9.

BITPIX Keyword The value field shall contain an integer. The absolute value is
used in computing the sizes of data structures. It shall specify the number of bits that

represent a data value.The only valid values of BITPIX are given in Table 5.2.

FITS Standard

8.3. BINARY TABLE EXTENSION 41

NAXIS Keyword The value field shall contain a non-negative integer no greater than

999, representing the number of axes in the associated data array. A value of zero
signifies that no data follow the header in the image extension.

NAXISn Keywords The value field of this indexed keyword shall contain a non-

negative integer, representing the number of elements along axis n of a data array.

The NAXISn must be present for all values n = 1, ..., NAXIS, and for no other values

of n. A value of zero for any of the NAXISn signifies that no data follow the header in

the image extension. If NAXIS is equal to 0, there should not be any NAXISn keywords.

PCOUNT Keyword The value field shall contain the integer 0.

GCOUNT Keyword The value field shall contain the integer 1; each image extension

contains a single array.

END Keyword This keyword has no associated value. Columns 9380 shall be filled

with ASCII blanks.

8.2.2 Units

The units of all header keyword values in an image extension shall follow the prescrip-
tions in §5.3.

8.2.3 Data Sequence

The data format shall be identical to that of a primary data array as described in §4.3.2.

8.3 Binary Table Extension

Data shall appear as a binary table extension if the primary header of the FITS file
has the keyword EXTEND set to T and the first keyword of that extension header has

XTENSION= 9BINTABLE9.

8.3.1 Mandatory Keywords

The XTENSION keyword is the first keyword of all binary table extensions. The seven
keywords following (BITPIX . . . TFIELDS) must be in the order specified in Table 8.4,

with no intervening keywords.

XTENSION Keyword The value field shall contain the character string 9BINTABLE9.

FITS Standard

42 SECTION 8. STANDARD EXTENSIONS

1 XTENSION

2 BITPIX
3 NAXIS

4 NAXIS1
5 NAXIS2

6 PCOUNT
7 GCOUNT

8 TFIELDS
...

(other keywords, which must include . . .)

TFORMn, n=1, 2, . . . , k where k is the value of TFIELDS
...

last END

Table 8.4: Mandatory keywords in binary table extensions.

BITPIX Keyword The value field shall contain the integer 8, denoting that the array

is an array of 8-bit bytes.

NAXIS Keyword The value field shall contain the integer 2, denoting that the included
data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the

number of 8-bit bytes in each row of the table.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the
number of rows in the table.

PCOUNT Keyword The value field shall contain the number of bytes that follow the

table in the associated extension data.

GCOUNT KeywordThe value field shall contain the integer 1; the data records contain

a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing

the number of fields in each row. The maximum permissible value is 999.

FITS Standard

8.3. BINARY TABLE EXTENSION 43

TFORMn Keywords The value field of this indexed keyword shall contain a character

string of the form rTa. The repeat count r is the ASCII representation of a non-negative
integer specifying the number of elements in field n. The default value of r is 1; the

repeat count need not be present if it has the default value. A zero element count,
indicating an empty field, is permitted. The data type T specifies the data type of the

contents of field n. Only the data types in Table 8.5 are permitted. The format codes
must be specified in upper case. For fields of type P or Q, the only permitted repeat
counts are 0 and 1.The additional characters a are optional and are not further defined

in this standard. Table 8.5 lists the number of bytes each data type occupies in a table
row. The first field of a row is numbered 1. The total number of bytes n row in a table

row is given by

nrow =
TFIELDSX

i=1

r i bi (8.2)

where ri is the repeat count for field i, bi is the number of bytes for the data type in

field i, and TFIELDS is the value of that keyword, must equal the value of NAXIS1.

TFORMn value Description 8-bit Bytes

L Logical 1

X Bit *
B Unsigned byte 1

I 16-bit integer 2
J 32-bit integer 4
K 64-bit integer 8

A Character 1
E Single precision floating point 4

D Double precision floating point 8
C Single precision complex 8

M Double precision complex 16
P Array Descriptor (32-bit) 8

Q Array Descriptor (64-bit) 16

7 number of 8-bit bytes needed to contain all bits

Table 8.5: Valid TFORMn data types in BINTABLE extensions.

END Keyword This keyword has no associated value. Columns 9380 shall contain

ASCII blanks.

FITS Standard

44 SECTION 8. STANDARD EXTENSIONS

8.3.2 Other Reserved Keywords

In addition to the mandatory keywords defined in §8.3.1, these keywords may be used

to describe the structure of a binary table data array. They are optional, but if they

appear within a binary table extension header, they must be used as defined in this

section of this standard.

TTYPEn Keywords The value field for this indexed keyword shall contain a character
string, giving the name of field n. It is recommended that only letters, digits, and

underscore (hexadecimalcode 5F, < =) be used in the name. String comparisons with
the values of TTYPEn keywords should not be case sensitive.The use of identical names

for different fields should be avoided.

TUNITn Keywords The value field shall contain a character string describing the

physical units in which the quantity in field n, after any application of TSCALn and

TZEROn, is expressed.Units must follow the prescriptions in §5.3.

TNULLn Keywords The value field for this indexed keyword shall contain the integer
that represents an undefined value for field n of data type B, I, J or K, or P or Q array

descriptor fields (§8.3.5) that point to B, I, J or K integer arrays. The keyword may not
be used if field n is of any other data type.

TSCALn Keywords This indexed keyword shall be used,along with the TZEROn key-
word, when the quantity in field n does not represent a true physical quantity. It may

not be used if the format of field n is A, L, or X. The interpretation for fields of type P or
Q is defined in §8.3.5.For fields with all other data types, the value field shall contain

a floating point number representing the coefficient of the linear term in Eq. 8.1, which
is used to compute the true physical value of the field, or, in the case of the complex

data types C and M, of the real part of the field, with the imaginary part of the scaling
factor set to zero. The default value for this keyword is 1.0.

TZEROn Keywords This indexed keyword shall be used,along with the TSCALn key-
word, when the quantity in field n does not represent a true physical quantity. It may

not be used if the format of field n is A, L, or X. The interpretation for fields of type P or
Q is defined in §8.3.5.For fields with all other data types, the value field shall contain

a floating point number representing the true physical value corresponding to a value
of zero in field n of the FITS file, or, in the case of the complex data types C and M, in

the real part of the field, with the imaginary part set to zero. The default value for this
keyword is 0.0. Equation 8.1 is used to compute a true physical value from the quantity

in field n.

FITS Standard

8.3. BINARY TABLE EXTENSION 45

TDISPn Keywords The value field of this indexed keyword shall contain a character

string describing the format recommended for the display of the contents of field n.
If the table value has been scaled, the physical value, derived using Eq. 8.1, shall be

displayed. All elements in a field shall be displayed with a single, repeated format. For
purposes of display,each byte of bit (type X) and byte (type B) arrays is treated a an

unsigned integer.Arrays of type A may be terminated with a zero byte.Only the format
codes in Table 8.6, discussed in §8.3.4,are permitted for encoding. The format codes
must be specified in upper case. If the Bw.m, Ow.m,and Zw.m formats are not readily

available to the reader, the Iw.m display format may be used instead, and if the ENw.d
and ESw.d formats are not available, Ew.d may be used. In the case of fields of type

P or Q, the TDISPn value applies to the data array pointed to by the array descriptor
(§8.3.5), not the values in the array descriptor itself.

Field Value Data Type

Aw Character

Lw Logical

Iw.m Integer

Bw.m Binary, integers only

Ow.m Octal, integers only

Zw.m Hexadecimal, integers only

Fw.d Single precision real
Ew.dEe Single precision real, exponential notation

ENw.d Engineering; E format with exponent multiple of 3
ESw.d Scientific; same as EN but nonzero leading digit if not zero

Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Double precision real, exponential notation

Table 8.6: Valid TDISPn format values in BINTABLE extensions.w is the width in char-

acters of displayed values, m is the minimum number of digits displayed, d is the number

of digits to right of decimal, and e is number of digits in exponent. The .m and Ee fields

are optional.

THEAP Keyword The value field of this keyword shall contain an integer providing

the separation, in bytes, between the start of the main data table and the start of a
supplemental data area called the heap.The default value, which is also the minimum

allowed value, shall be the product of the values of NAXIS1 and NAXIS2.This keyword
shall not be used if the value of PCOUNT is zero.The use of this keyword is described in

in §8.3.5.

FITS Standard

46 SECTION 8. STANDARD EXTENSIONS

TDIMn Keywords The value field of this indexed keyword shall contain a character

string describing how to interpret the contents of field n as a multidimensional array
with a format of 9(l,m,n...)9 where l, m, n, . . . are the dimensions of the array. The

data are ordered such that the array index of the first dimension given (l) is the most
rapidly varying and that of the last dimension given is the least rapidly varying. The

total number of elements in the array equals the product of the dimensions specified
in the TDIMn keyword. The size must be less than or equal to the repeat count on the
TFORMn keyword,or, in the case of columns that have a <P= or <Q= TFORMn datatype,

less than or equal to the array length specified in the variable-length array descriptor
(see §8.3.5).In the special case where the variable-length array descriptor has a size of

zero, then the TDIMn keyword is not applicable.If the number of elements in the array
implied by the TDIMn is less than the allocated size of the array in the FITS file, then

the unused trailing elements should be interpreted as containing undefined fill values.
A character string is represented in a binary table by a one-dimensional character

array, as described under <Character= in the list of datatypes in §8.3.3.1 (<Main Data
Table =). For example, a Fortran 77 CHARACTER*20 variable could be represented in

a binary table as a character array declared as TFORMn = 920A 9. Arrays of
character strings, i.e., multidimensional character arrays, may be represented using the

TDIMn notation. For example, if TFORMn =960A 9 and TDIMn = 9(5,4,3)9, then
the entry consists of a 4 × 3 array of strings of 5 characters each.

8.3.3 Data Sequence

The data in a binary table extension shall consist of a Main Data Table which may, but

need not, be followed by additional bytes. The positions in the last data record after

the last additional byte, or, if there are no additional bytes, the last character of the

last row of the data array, shall be filled by setting all bits to zero.

8.3.3.1 Main Data Table

The table is constructed from a two-dimensional byte array. The number of bytes in a

row shall be specified by the value of the NAXIS1 keyword and the number of rows shall
be specified by the NAXIS2 keyword of the associated header records. Within a row,

fields shall be stored in order of increasing column number, as determined from the n
of the TFORMn keywords.The number of bytes in a row and the number of rows in the

table shall determine the size of the byte array. Every row in the array shall have the
same number of bytes.The first row shall begin at the start of the record immediately

following the last header record.Subsequent rows shall begin immediately following the
end of the previous row, with no intervening bytes, independent of the record structure.

Words need not be aligned along word boundaries.
Each row in the array shall consist of a sequence of fields.The number of elements

in each field and their data type shall be specified in keywords of the associated header

FITS Standard

8.3. BINARY TABLE EXTENSION 47

records. A separate format keyword must be provided for each field. The location and

format of fields shall be the same for every row. Fields may be empty, if the repeat
count specified in the value of the TFORMn keyword ofthe header is 0. The following

data types, and no others, are permitted.

Logical If the value of the TFORMn keyword specifies data type L,the contents of

field n shall consist of ASCII T indicating true or ASCII F, indicating false. A 0 byte

(hexadecimal 0) indicates an invalid value.

Bit Array If the value of the TFORMn keyword specifies data type X,the contents of

field n shall consist of a sequence of bits starting with the most significant bit; the bits
following shall be in order of decreasing significance,ending with the least significant

bit. A bit array shall be composed of an integral number of bytes, with those bits
following the end of the data set to zero. No null value is defined for bit arrays.

Character If the value of the TFORMn keyword specifies data type A,field n shall
contain a character string of zero or more members, composed of ASCII text. This

character string may be terminated before the length specified by the repeat count by
an ASCII NULL (hexadecimal code 00). Characters after the first ASCII NULL are

not defined. A string with the number of characters specified by the repeat count is not
NULL terminated. Null strings are defined by the presence of an ASCII NULL as the

first character.

Unsigned 8-Bit Integer If the value of the TFORMn keyword specifies data type B,

the data in field n shall consist of unsigned 8-bit integers, with the most significant bit

first, and subsequent bits in order of decreasing significance.Null values are given by
the value of the associated TNULLn keyword.

16-Bit Integer If the value of the TFORMn keyword specifies data type I, the data in

field n shall consist of twos-complement signed 16-bit integers, contained in two bytes.
The most significant byte shall be first. Within each byte the most significant bit shall

be first, and subsequent bits shall be in order of decreasing significance.Null values
are given by the value of the associated TNULLn keyword.Unsigned integers can be

represented using the convention described in § 6.2.5.

32-Bit Integer If the value of the TFORMn keyword specifies data type J,the data
in field n shall consist of twos-complement signed 32-bit integers, contained in four

bytes. The most significant byte shall be first, and subsequent bytes shallbe in order
of decreasing significance.Within each byte, the most significant bit shall be first, and

subsequent bits shall be in order of decreasing significance.Null values are given by the

FITS Standard

48 SECTION 8. STANDARD EXTENSIONS

value of the associated TNULLn keyword.Unsigned integers can be represented using

the convention described in § 6.2.5.

64-Bit Integer If the value of the TFORMn keyword specifies data type K,the data

in field n shall consist of twos-complement signed 64-bit integers, contained in eight
bytes. The most significant byte shall be first, and subsequent bytes shallbe in order

of decreasing significance.Within each byte, the most significant bit shall be first, and
subsequent bits shall be in order of decreasing significance.Null values are given by the

value of the associated TNULLn keyword.Unsigned integers can be represented using

the convention described in § 6.2.5.

Single Precision Floating Point If the value of the TFORMn keyword specifies data
type E, the data in field n shall consist of ANSI/IEEE-754 [15] 32-bit floating point

numbers, as described in Appendix H. All IEEE special values are recognized. The
IEEE NaN is used to represent invalid values.

Double Precision Floating Point If the value of the TFORMn keyword specifies
data type D, the data in field n shall consist of ANSI/IEEE-754 [15] 64-bit double

precision floating point numbers, as described in Appendix H. All IEEE special values
are recognized.The IEEE NaN is used to represent invalid values.

Single Precision Complex If the value of the TFORMn keyword specifies data type C,

the data in field n shall consist of a sequence of pairs of 32-bit single precision floating

point numbers. The first member of each pair shall represent the real part of a complex
number, and the second member shall represent the imaginary part of that complex

number. If either member contains a NaN, the entire complex value is invalid.

Double Precision Complex If the value of the TFORMn keyword specifies data type
M, the data in field n shall consist of a sequence of pairs of 64-bit double precision floating

point numbers. The first member of each pair shall represent the real part of a complex
number, and the second member of the pair shall represent the imaginary part of that

complex number. If either member contains a NaN, the entire complex value is invalid.

Array Descriptor If the value of the TFORMn keyword specifies data type P, the data

in field n shall consist of not more than one pair of 32-bit integers. If the value of the
TFORMn keyword specifies data type Q, the data in field n shall consist of not more than

one pair of 64-bit integers. The meaning of these integers is defined in §8.3.5.

FITS Standard

8.3. BINARY TABLE EXTENSION 49

8.3.3.2 Bytes Following Main Table

The main data table shall be followed by an additional data area containing zero or
more bytes, as specified by the value of the PCOUNT keyword.One use for this data area

is described in §8.3.5.This does not preclude other uses for these bytes.

8.3.4 Data Display

Character data are encoded under format code Aw.If the character datum has length less

than or equal to w, it is represented on output right-justified in a string of w characters.
If the character datum has length greater than w, the first w characters of the datum are

represented on output in a string of w characters. Character data are not surrounded
by single or double quotation marks unless those marks are themselves part of the data

value.
Logical data are encoded under format code Lw. Logical data are represented on

output with the character T for true or F for false right justified in a blank-filled string
of w characters. A null value may be represented by a completely blank string of w

characters.
Integer data (including bit X and byte B type fields) are encoded under format codes

Iw.m, Bw.m,Ow.m,and Zw.m. The default value of m is one and the <.m= is optional.
The first letter of the code specifies the number base for the encoding with I for decimal

(10), B for binary (2), O for octal (8), and Z for hexadecimal (16). Hexadecimal format
uses the upper-case letters A through F to represent decimal values 10 through 15.The

output field consists of w characters containing zero or more leading blanks followed by a
minus if the internal datum is negative followed by the magnitude of the internal datum

in the form of an unsigned integer constant in the specified number base with only as
many leading zeros as are needed to have at least m numeric digits. Note that m f w

is allowed if all values are positive, but m < w is required if any values are negative. If
the number of digits required to represent the integer datum exceeds w, then the output

field consists of a string of w asterisk (*) characters.
Real data are encoded under format codes Fw.d, Ew.dEe, Dw.dEe, ENw.d, and ESw.d.

In all cases, the output is a string of w characters including the decimal point, any sign
characters, and any exponent including the exponent9s indicators, signs, and values.If

the number of digits required to represent the real datum exceeds w,then the output
field consists of a string of w asterisk (*) characters.In all cases, d specifies the number

of digits to appear to the right of the decimal point. The F format code output field
consists of w 2 d 2 1 characters containing zero or more leading blanks followed by a

minus if the internal datum is negative followed by the absolute magnitude of the internal
datum in the form of an unsigned integer constant. These characters are followed by a

decimal point (<.=) and d characters giving the fractional part of the internal datum,
rounded by the normal rules of arithmetic to d fractional digits. For the E and D format

codes, an exponent is taken such that the fraction 0.1 f |datum|/10 exponent < 1.0. The

FITS Standard

50 SECTION 8. STANDARD EXTENSIONS

fraction (with appropriate sign) is output with an F format of width w 2 e 2 2 characters

with d characters after the decimal followed by an E or D followed by the exponent as
a signed e + 1 character integer with leading zeros as needed. The default value of e

is 2 when the Ee portion of the format code is omitted. If the exponent value will not
fit in e + 1 characters but will fit in e + 2 then the E (or D) is omitted and the wider

field used. If the exponent value will not fit (with a sign character) in e + 2 characters,
then the entire w-character output field is filled with asterisks (*). The ES format code
is processed in the same manner as the E format code except that the exponent is taken

so that 1.0 f fraction < 10. The EN format code is processed in the same manner as the
E format code except that the exponent is taken to be an integer multiple of 3 and so

that 1.0 f fraction < 1000.0. All real format codes have number base 10. There is no
difference between E and D format codes on input other than an implication with the

latter of greater precision in the internal datum.

The Gw.dEe format code may be used with data of any type. For data of type
integer, logical, or character, it is equivalent to Iw, Lw, or Aw, respectively. For data

of type real, it is equivalent to an F format (with different numbers of characters after
the decimal) when that format will accurately represent the value and is equivalent to

an E format when the number (in absolute value) is either very small or very large.
Specifically, for real values outside the range 0.1 2 0.5×102d21 f value < 10 d 2 0.5, it

is equivalent to Ew.dEe.For real values within the above range, it is equivalent to Fw0.d0

followed by 2 + e blanks, where w0 = w2e22 and d 0 = d 2 k for k = 0, 1, . . . , d if the real

datum value lies in the range 10k21 1 2 0.5×10 2d f value f 10 k 1 2 0.5×10 2d .

Complex data are encoded with any of the real data formats as described above.
The same format is used for the real and imaginary parts. It is recommended that the

2 values be separated by a comma and enclosed in parentheses with a total field width
of 2w + 3.

8.3.5 Variable-Length Arrays

One of the most attractive features of binary tables is that any field of the table can be
an array. In the standard case this is a fixed size array, i.e., a fixed amount of storage

is allocated in each record for the array data4whether it is used or not. This is fine so
long as the arrays are small or a fixed amount of array data will be stored in each record,

but if the stored array length varies for different records, it is necessary to impose a
fixed upper limit on the size of the array that can be stored. If this upper limit is made

too large excessive wasted space can result and the binary table mechanism becomes

seriously inefficient. If the limit is set too low then it may become impossible to store

certain types of data in the table.

The <variable-length array= construct presented here was devised to deal with this
problem. Variable-length arrays are implemented in such a way that, even if a table

contains such arrays, a simple reader program which does not understand variable-length

FITS Standard

8.3. BINARY TABLE EXTENSION 51

arrays will still be able to read the main table (in other words a table containing variable-

length arrays conforms to the basic binary table standard).The implementation chosen
is such that the records in the main table remain fixed in size even if the table contains

a variable-length array field, allowing efficient random access to the main table.
Variable-length arrays are logically equivalent to regular static arrays, the only dif-

ferences being 1) the length of the stored array can differ for different records, and 2) the
array data are not stored directly in the table records. Since a field of any datatype can
be a static array, a field of any datatype can also be a variable-length array (excluding

the type P and Q variable-length array descriptors themselves, which are not a datatype
so much as a storage class specifier).Other established FITS conventions that apply to

static arrays will generally apply as well to variable-length arrays.
A variable-length array is declared in the table header with a special field datatype

specifier of the form
rPt(e max) or rQt(e max)

where the <P= or <Q= indicates the presence of an array descriptor (described below),

the element count r should be 0, 1, or absent, t is a character denoting the datatype of
the array data (L, X, B, I, J, K, etc., but not P or Q), and e max is a quantity guaranteed

to be equal to or greater than the maximum number of elements of type t actually
stored in a table record. There is no built-in upper limit on the size of a stored array

(other than the fundamental limit imposed by the range of the array descriptor, defined
below); emax merely reflects the size of the largest array actually stored in the table,

and is provided to avoid the need to preview the table when, for example, reading a
table containing variable-length elements into a database that supports only fixed size

arrays. There may be additional characters in the TFORMn keyword following the emax .
For example,

TFORM8 = 9PB(1800)9 / Variable byte array

indicates that field 8 of the table is a variable-length array of type byte, with a maximum

stored array length not to exceed 1800 array elements (bytes in this case).

The data for the variable-length arrays in a table are not stored in the actual data

records; they are stored in a special data area, the heap, following the last fixed size

data record. What is stored in the data record is an array descriptor. This consists

of two 32-bit signed integer values in the case of <P= array descriptors, or two 64-bit

signed integer values in the case of <Q= array descriptors:the number of elements (array

length) of the stored array, followed by the zero-indexed byte offset of the first element

of the array, measured from the start of the heap area. The meaning of a negative

value for either of these integers is not defined by this standard. Storage for the array

is contiguous. The array descriptor for field N as it would appear embedded in a data

record is illustrated symbolically below:

. . . [field N 31] [(nelem,offset)] [field N +1] . . .

FITS Standard

52 SECTION 8. STANDARD EXTENSIONS

If the stored array length is zero there is no array data, and the offset value is

undefined (it should be set to zero).The storage referenced by an array descriptor must
lie entirely within the heap area; negative offsets are not permitted.

A binary table containing variable-length arrays consists of three principal segments,
as follows:

[table header] [record storage area] [heap area]

The table header consists of one or more 2880-byte FITS logical records with the

last record indicated by the keyword END somewhere in the record.The record storage

area begins with the next 2880-byte logical record following the last header record and

is NAXIS1 × NAXIS2 bytes in length.The zero indexed byte offset of the heap measured
from the start of the record storage area is given by the THEAP keyword in the header.

If this keyword is missing the heap is assumed to begin with the byte immediately
following the last data record, otherwise there may be a gap between the last stored

record and the start of the heap. If there is no gap the value of the heap offset is
NAXIS1 × NAXIS2.The total length in bytes of the heap area following the last stored

record (gap plus heap) is given by the PCOUNT keyword in the table header.
For example, suppose we have a table containing 5 rows each 168 bytes long,with

a heap area 3000 bytes long, beginning at an offset of 2880, thereby aligning the record
storage and heap areas on FITS record boundaries (this alignment is not necessarily

recommended but is useful for our example).The data portion of the table consists of 3
2880-byte FITS records: the first record contains the 840 bytes from the 5 rows of the

main table followed by 2040 fill bytes; the heap completely fills the second record;the
third record contains the remaining 120 bytes of the heap followed by 2760 filll bytes.

PCOUNT gives the total number of bytes from the end of the main table to the end of the
heap and in this example has a value of 2040 + 2880 + 120 = 5040.This is expressed in

the table header as:

NAXIS1 = 168 / Width of table row in bytes

NAXIS2 = 5 / Number of rows in table
PCOUNT= 5040 / Random parameter count

...
THEAP = 2880 / Byte offset of heap area

The values of TSCALn and TZEROn for variable-length array column entries are to be
applied to the values in the data array in the heap area, not the values of the array

descriptor. These keywords can be used to scale data values in either static or variable-
length arrays.

While the above description is sufficient to define the required features of the variable-
length array implementation, some hints regarding usage ofthe variable-length array

facility may also be useful.

FITS Standard

8.3. BINARY TABLE EXTENSION 53

Programs which read binary tables should take care to not assume more about the

physical layout of the table than is required by the specification.For example, there are
no requirements on the alignment of data within the heap. If efficient runtime access

is a concern one may want to design the table so that data arrays are aligned to the
size of an array element.In another case one might want to minimize storage and forgo

any efforts at alignment (by careful design it is often possible to achieve both goals).
Variable-length array data may be stored in the heap in any order, i.e., the data for
record N +1 are not necessarily stored at a larger offset than that for record N . There

may be gaps in the heap where no data are stored. Pointer aliasing is permitted, i.e.,
the array descriptors for two or more arrays may point to the same storage location

(this could be used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be used to store a <typeless= data

sequence.Since FITS is a machine-independent storage format, some form of machine-

specific data conversion (byte swapping, floating point format conversion) is implied
when accessing stored data with types such as integer and floating, but byte arrays are

copied to and from external storage without any form of conversion.

An important feature of variable-length arrays is that it is possible that the stored

array length may be zero. This makes it possible to have a column of the table for
which, typically, no data are present in each stored record. When data are present the

stored array can be as large as necessary. This can be useful when storing complex
objects as records in a table.

Accessing a binary table stored on a random access storage medium is straightfor-
ward. Since the data records in the main table are fixed in size they may be randomly

accessed given the record number,by computing the offset. Once the record has been
read in, any variable-length array data may be directly accessed using the element count

and offset given by the array descriptor stored in the data record.

Reading a binary table stored on a sequential access storage medium requires that

a table of array descriptors be built up as the main table records are read in. Once all
the table records have been read,the array descriptors are sorted by the offset of the

array data in the heap. As the heap data are read, arrays are extracted sequentially
from the heap and stored in the affected records using the back pointers to the record

and field from the table of array descriptors. Since array aliasing is permitted, it may
be necessary to store a given array in more than one field or record.

Variable-length arrays are more complicated than regular static arrays and may not

be supported by some software systems.The producers of FITS data products should
consider the capabilities of the likely recipients of their files when deciding whether or

not to use this format, and as a general rule should use it only in cases where it provides
significant advantages over the simpler fixed-length array format.In particular, the use

of variable-length arrays may present difficulties for applications that ingest the FITS

file via a sequential input stream because the application cannot fully process any rows

in the table until after the entire fixed-length table and potentially the entire heap has

FITS Standard

54 SECTION 8. STANDARD EXTENSIONS

been transmitted as outlined in the previous paragraph.

FITS Standard

55

Section 9

Restrictions on Changes

Any structure that is a valid FITS structure shall remain a valid FITS structure at all

future times. Use of certain valid FITS structures may be deprecated by this or future
FITS standard documents.

FITS Standard

56 SECTION 9. RESTRICTIONS ON CHANGES

FITS Standard

57

Appendix A

Formal Syntax of Card Images

(This Appendix is not part of the NOST FITS standard but is included for convenient

reference.)
The following notation is used in defining the formal syntax.

:= means <is defined to be=
X | Y means one of X or Y (no ordering relation is implied)

[X] means that X is optional
X... means X is repeated 1 or more times

8B9 means the ASCII character B
8A938Z9 means one of the ASCII characters A through Z

\0xnn means the ASCII character associated with the hexadecimal code nn
{...} expresses a constraint or a comment (it immediately follows the syntax rule)

The following statements define the formal syntax used in FITS free format card
images.

FITS card image :=

FITS commentary card image | FITS value card image

FITS commentary card image :=
COMMENT keyword [ascii text char...] |

HISTORY keyword [ascii text char...] |

BLANKFIELD keyword [ascii text char...] |

keyword field anychar but equal [ascii text char...] |

keyword field 9=9 anychar but space [ascii text char...]

{Constraint: The total number of characters in a FITS commentary card image must
be exactly equal to 80.}

FITS Standard

58 APPENDIX A. FORMAL SYNTAX OF CARD IMAGES

FITS value card image :=

keyword field value indicator [space...] [value] [space...][comment]
{Constraint: The total number of characters in a FITS value card image must be ex-

actly equal to 80.}
{Comment: If the value field is not present, the value of the FITS keyword is not de-

fined.}

keyword field :=
[keyword char...] [space...]

{Constraint: The total number of characters in the keyword field must be exactly equal
to 8.}

keyword char :=
8A938Z9 | 8093899 | 8 9 | 8-9

COMMENT keyword :=

8C9 8O9 8M9 8M9 8E9 8N9 8T9 space

HISTORY keyword :=

8H9 8I9 8S9 8T9 8O9 8R9 8Y9 space

BLANKFIELD keyword :=

space space space space space space space space

value indicator :=
8=9 space

space :=
8 9

comment :=

8/9 [ascii text char...]

ascii text char :=

space38~9

anychar but equal :=

space38<9 | 8>938~9

anychar but space :=

8!938~9

FITS Standard

59

value :=
character string value | logical value | integer value | floating value |

complex integer value | complex floating value

character string value :=

begin quote [string text char...] end quote
{Constraint: The begin quote and end quote are not part of the character string value

but only serve as delimiters. Leading spaces are significant; trailing spaces are not.}

begin quote :=

quote

end quote :=
quote

{Constraint: The ending quote must not be immediately followed by a second quote.}

quote :=

\0x27

string text char :=
ascii text char

{Constraint: A string text char is identical to an ascii text char except for the quote
char; a quote char is represented by two successive quote chars.}

logical value :=

8T9 | 8F9

integer value :=

[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a signed decimal number. It may

contain leading zeros.}

sign :=

8-9 | 8+9

digit :=

8093899

floating value :=

decimal number [exponent]

FITS Standard

60 APPENDIX A. FORMAL SYNTAX OF CARD IMAGES

decimal number :=

[sign] [integer part] [?.? [fraction part]]
{Constraint: At least one of the integer part and fraction part must be present.}

integer part :=

digit | [digit...]

fraction part :=

digit | [digit...]

exponent :=
exponent letter [sign] digit [digit...]

exponent letter :=

8E9 | 8D9

complex integer value :=
8(9 [space...] real integer part [space...] 8,9 [space...]

imaginary integer part [space...] 8)9

real integer part :=
integer value

imaginary integer part :=

integer value

complex floating value :=

8(9 [space...] real floating part [space...] 8,9 [space...]

imaginary floating part [space...] 8)9

real floating part :=

floating value

imaginary floating part :=

floating value

FITS Standard

61

Appendix B

Proposed Binary Table

Convention

(This Appendix is not part of the NOST FITS Standard but is included for informa-

tional purposes only.)

In the paper describing the binary table extension, type name 9BINTABLE9 [10], the
authors present three conventions:one for variable length arrays, one for multidimen-

sional arrays and one for substring arrays. The first 2 conventions were subsequently
(April 2005) approved by the IAUFWG and have been incorporated into the official

FITS standard. The draft text for the remaining appendix, available on-line in the
directory http://www.cv.nrao.edu/fits/documents/standards/, is reproduced here

nearly verbatim; the only changes are those required for stylistic consistency with the
rest of this document.

B.1 <Substring Array= Convention

This appendix describes a layered convention for specifying that a character array field

(TFORMn = 9rA 9) consists of an array of either fixed-length or variable-length sub-

strings within the field. This convention utilizes the option described in the basic binary

table definition to have additional characters following the datatype code character in

the TFORMn value field.The full form for the value of TFORMn within this convention is

9rA:SSTRw/nnn9

and a simpler form that may be used for fixed-length substrings only is

9rAw9

where

FITS Standard

62 APPENDIX B. PROPOSED BINARY TABLE CONVENTION

r is an integer giving the total length including any delimiters (in characters)

of the field,
A signifies that this is a character array field,

: indicates that a convention indicator follows,
SSTR indicates the use of the <Substring Array= convention,

w is an integer f r giving the (maximum) number of characters in an indi-
vidual substring (not including the delimiter), and

/nnn if present, indicates that the substrings have variable-length and are

delimited by an ASCII text character with decimal value nnn in the
range 032 to 126 decimal, inclusive.This character is referred to as the

delimiter character. The delimiter character for the last substring will
be an ASCII NUL.

To illustrate this usage:

940A:SSTR89 signifies that the field is 40 characters wide and consists of
an array of 5 8-character fixed-length substrings. This could also be

expressed using the simpler form as 940A89

9100A:SSTR8/0329 signifies that the field is 100 characters wide and con-
sists of an array of variable-length substrings where each substring has

a maximum length of 8 characters and, except for the last substring, is
terminated by an ASCII SPACE (decimal 32) character.

Note that simple FITS readers that do not understand this substring convention

can ignore the TFORM characters following the rA and can interpret the field simply as a

single long string as described in the basic binary table definition.

The following rules complete the full definition of this convention:

1. In the case of fixed-length substrings, if r is not an integer multiple of w then the

remaining odd characters are undefined and should be ignored. For example if
TFORMn =914A:SSTR39,then the field contains 4 3-character substrings followed

by 2 undefined characters.

2. Fixed-length substrings must always be padded with blanks if they do not other-
wise fill the fixed-length subfield. The ASCII NUL character must not be used to

terminate a fixed-length substring field.

3. The character following the delimiter character in variable-length substrings is the
first character of the following substring.

4. The method of signifying an undefined or null substring within a fixed-length
substring array is not explicitly defined by this convention (note that there is no

ambiguity if the variable-length format is used). In most cases it is recommended

FITS Standard

B.1. <SUBSTRING ARRAY= CONVENTION 63

that a completely blank substring or other adopted convention (e.g. 9INDEF9) be

used for this purpose although general readers are not expected to recognize these
as undefined strings.In cases where it is necessary to make a distinction between

a blank, or other, substring and an undefined substring use of variable-length
substrings is recommended.

5. Undefined or null variable-length substrings are designated by a zero-length sub-

string, i.e., by a delimiter character (or an ASCII NUL if it is the last substring in
the table field) in the first position of the substring. An ASCII NUL in the first

character of the table field indicates that the field contains no defined variable-
length substrings.

6. The <Multidimensional Array=convention described in §8.3.2 of this paper pro-

vides a syntax using the TDIMn keyword for describing multidimensional arrays of

any datatype which can also be used to represent arrays of fixed-length substrings.

For a one dimensional array of substrings (a two dimensional array of characters)

the <Substring Array= convention is preferred over the <Multidimensional Array=

convention. Multidimensional arrays of (fixed length) strings require the use of

the <Multidimensional Array= convention.

7. This substring convention may be used in conjunction with the <Variable Length

Array= facility described in §8.3.5. In this case, the two possible full forms for the
value of the TFORM keyword are

TFORMn = 9rPA(emax):SSTRw/nnn9

and

TFORMn = 9rPA(emax):SSTRw9

for the variable and fixed cases, respectively.

This convention is optional and will not preclude other conventions.This convention
is not part of the binary table definition.

FITS Standard

64 APPENDIX B. PROPOSED BINARY TABLE CONVENTION

FITS Standard

65

Appendix C

Implementation on Physical

Media

(This Appendix is not part of the NOST FITS Standard, but is included as a guide to
recommended practices.)

C.1 Physical Properties of Media

The arrangement of digital bits and other physical properties of any medium should

be in conformance with the relevant national and/or international standard for that
medium.

C.2 Labeling

C.2.1 Tape

Tapes may be either ANSI standard labeled or unlabeled.Unlabeled tapes are preferred.

C.2.2 Other Media

Conventions regarding labels for physical media containing FITS files have not been

established for other media.

C.3 FITS File Boundaries

C.3.1 Magnetic Reel Tape

Individual FITS files are terminated by a tape-mark.

FITS Standard

66 APPENDIX C. IMPLEMENTATION ON PHYSICAL MEDIA

C.3.2 Other Media

For fixed block length sequential media where the physical block size cannot be equal
to or an integral multiple of the standard FITS logical record length, a logical record of

fewer than 23040 bits (2880 8-bit bytes) immediately following the end of the primary
header, data, or an extension should be treated as an end-of-file.Otherwise, individual

FITS files should be terminated by a delimiter appropriate to the medium, analogous
to the tape end-of-file mark. If more than one FITS file appears on a physical structure,

the appropriate end-of-file indicator should immediately precede the start of the primary
headers of all files after the first.

C.4 Multiple Physical Volumes

Storage of a single FITS file on more than one unlabeled tape or on multiple units of

any other medium is not universally supported in FITS. One possible way to handle

multivolume unlabeled tape was suggested in [1]. A convention for logically grouping

on-line FITS HDUs that may physically be located in different sites has been proposed

in [16].

FITS Standard

67

Appendix D

Suggested Time Scale

Specification

[Not part of formal DATExxxx agreement]

1. Use of the keyword TIMESYS is suggested as an implementation of the time scale
specification. It sets the principal time system for time-related keywords and data

in the HDU (i.e., it does not preclude the addition of keywords or data columns
that provide information for transformations to other time scales, such as sidereal

times or barycenter corrections). Each HDU shall contain not more than one
TIMESYS keyword.Initially, officially allowed values are:

UTC Coordinated Universal Time; defined since 1972.

UT Universal Time, equal to Greenwich Mean Time (GMT) since 1925; the UTC
equivalent before 1972; see:Explanatory Supplement, p. 76.

TAI International Atomic Time; <UTC without the leap seconds=; 31 s ahead of
UTC on 1997-07-01.

AT International Atomic Time; deprecated synonym of TAI.

ET Ephemeris Time, the predecessor of TT; valid until 1984.

TT Terrestrial Time, the IAU standard time scale since 1984; continuous with ET
and synchronous with (but 32.184 s ahead of) TAI.

TDT Terrestrial Dynamical Time; = TT.

TDB Barycentric Dynamical Time.

TCG Geocentric Coordinate Time; runs ahead of TT since 1977-01-01 at a rate of

approximately 22 ms/year.

TCB Barycentric Coordinate Time; runs ahead of TDB since 1977-01-01 at a rate

of approximately 0.5 s/year.

FITS Standard

68 APPENDIX D. SUGGESTED TIME SCALE SPECIFICATION

For reference, see:Explanatory Supplement to the Astronomical Almanac, P. K.

Seidelmann, ed., University Science Books, 1992, ISBN 0-935702-68-7, or

http://tycho.usno.navy.mil/systime.html

Use of Global Positioning Satellite (GPS) time (19 s behind TAI) is deprecated.

2. By default, times will be deemed to be as measured at the detector (or in practical

cases,at the observatory) for times that run synchronously with TAI (i.e., TAI,

UTC, and TT). In the case of coordinate times (such as TCG and TCB) and TDB

which are tied to an unambiguous coordinate origin, the default meaning of time

values will be: time as if the observation had taken place at the origin of the coor-

dinate time system. These defaults follow common practice;a future convention

on time scale issues in FITS files may allow other combinations but shall preserve

this default behavior. The rationale is that raw observational data are most likely

to be tagged by a clock that is synchronized with TAI, while a transformation to

coordinate times or TDB is usually accompanied by a spatial transformation, as

well. This implies that path length differences have been corrected for.Note that

the difference TDB 2 UTC, in that case, is approximately sinusoidal, with period
one year and amplitude up to 500 s, depending on source position. Also, note

that when the location is not unambiguous (such as in the case of an interferom-
eter) precise specification of the location is strongly encouraged in, for instance,

geocentric Cartesian coordinates.

3. Note that TT is the IAU preferred standard. It may be considered equivalent to

TDT and ET, though ET should not be used for data taken after 1984.For reference,
see:Explanatory Supplement, pp. 40-48.

4. If the TIMESYS keyword is absent or has an unrecognized value, the value UTC will
be assumed for dates since 1972, and UT for pre-1972 data.

5. Examples. The three legal representations of the date of October 14, 1996, might

be written as:

DATE-OBS= 914/10/969 / Original format, means 1996 Oct 14.

TIMESYS = 9UTC 9 / Explicit time scale specification: UTC.
DATE-OBS= 91996-10-149 / Date of start of observation in UTC.

DATE-OBS= 91996-10-149 / Date of start of observation, also in UTC.

TIMESYS = 9TT 9 / Explicit time scale specification: TT.
DATE-OBS= 91996-10-14T10:14:36.1239 / Date and time of start of obs. in TT.

FITS Standard

69

6. The convention suggested in this Appendix is part of the mission-specific FITS

conventions adopted for, and used in, the RXTE archive, building on existing
High Energy Astrophysics FITS conventions. See:

http://heasarc.gsfc.nasa.gov/docs/xte/abc/time tutorial.html

http://heasarc.gsfc.nasa.gov/docs/xte/abc/time.html

The VLBA project has adopted a convention where the keyword TIMSYS,rather
than TIMESYS,is used, currently allowing the values UTC and IAT. See p. 9 and

p. 16 of:

http://www.cv.nrao.edu/fits/documents/drafts/vlba format.ps

FITS Standard

70 APPENDIX D. SUGGESTED TIME SCALE SPECIFICATION

FITS Standard

71

Appendix E

Differences from IAU-endorsed

Publications

(This Appendix is not part of the NOST FITS Standard but is included for informa-

tional purposes only.)

Note: In this discussion, the term the FITS papers refers to [1], [2], [4], [5], [9],

and [10] collectively, the term Floating Point Agreement (FPA) refers to [8], the term
Blocking Agreement refers to [11]; and the term DATExxxx Agreement refers to the

redefinition of the value format for date keywords approved by the IAUFWG in 1997.

1. §3 4 Definitions, Acronyms, and Symbols

Array value 4 This precise definition is not used in the original FITS papers.

ASCII text 4 This permissible subset of the ASCII character set, used in many
contexts, is not precisely defined in the FITS papers.

Basic FITS 4 This definition includes the possibility of floating point data ar-
rays, while the terminology in the FITS papers refers to FITS as described

in [1], where only integer arrays were possible.

Conforming Extension 4 This terminology is not used in the FITS papers.

Deprecate 4 The concept of deprecation does not appear in the FITS papers.

FITS structure 4 This terminology is not used in the FITS papers in the
precise way that it is in this standard.

Fraction 4 This terminology and the distinction between fraction and mantissa

do not appear in the Floating Point Agreement.

Header and Data Unit 4 This terminology is not used in the FITS papers.

Indexed keyword 4 This terminology is not used in the original FITS papers.

Physical value 4 This precise definition is not used in the original FITS papers.

FITS Standard

72

APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

Reference point 4 This term replaces the reference pixelof the FITS papers.

The new terminology is consistent with the fact that the array need not
represent a digital image and that the reference point (or pixel) need not lie

within the array.

Repeat count 4This terminology is not used in the FITS papers.

Reserved keyword 4 The FITS papers describe optional keywords but do not
say explicitly that they are reserved.

Standard Extension 4 This precise definition is new.The term standard ex-

tension is used in some contexts in the FITS papers to refer to what this

standard defines as a standard extension and in others to refer to what this

standard defines as conforming extension.

2. §4.3.2 Primary Data Array
Fill format 4 This specification is new. The FITS papers and the FPA do not

precisely specify the format of data fill for the primary data array.

3. §4.4.1.1 Identity (of conforming extensions)

The FITS papers specify that creators of new extension types should check with
the FITS standards committee. This standard identifies the committee specifi-

cally, introduces the role of the FITS Support Office as its agent, and mandates
registration.

4. §4.6 Physical Blocking

This material is based entirely on the Blocking Agreement. Material in the early

FITS papers [1,4] specifying the expression of FITS on specific physical media is

not part of this standard.

5. §4.6.1 Bitstream Devices

The Blocking Agreement specifies that this rule applies to FITS files written to
logical file systems. This standard applies the rule to all bitstream devices, not
only logical file systems.

6. §4.6.2.1 Fixed Block

The Blocking Agreement specifies that this rule applies to FITS files written

to optical disks, (accessed as a sequentialset of records), QIC format 1/4-inch

cartridge tapes and Local Area networks.This standard extends the rule to other

fixed block length sequential media.

7. §4.6.2.2 Variable Block
The Blocking Agreement specifies that this rule applies to FITS files written to

1/2-inch 9 track tapes, DDS/DAT 4mm cartridge tapes and 8mm cartridge tape
(Exabyte). This standard extends the rule to all variable block length sequential

media and eliminates references to specific products.

FITS Standard

73

8. §5.1.2.1 Keyword (as header component)

The specification of permissible keyword characters is new.The FITS papers do
not precisely define the permissible characters for keywords.

9. §5.1.2.2 Value Indicator (bytes 9310)

The FITS papers do not specifically address the permissibility of null values.This
standard states explicitly that they are permitted.

10. §5.1.2.3 Value/Comment (bytes 11380)

In the FITS papers, the slash between the value and comment is optional. This

standard requires the slash, consistent with the prescription of FORTRAN-77

list-directed input.

11. §5.2 Value, including its subsections

The FITS papers specify that the value field is to be written following the rules
of ANSI FORTRAN-77 list-directed input, with some restrictions. This standard

explicitly describes the format of the value field. The FITS papers permit the
value field to contain an array of values. This standard specifies that there shall

be only one value in the value field.The FITS papers require the fixed format for
the most essential parameters.This standard identifies those parameters with the

values of the mandatory keywords.

12. §5.2.1 Character String
The standard explicitly describes how single quotes are to be coded into keyword

values,a rule only implied by the FORTRAN-77 list-directed read requirements
of the FITS papers.

The standard states that in general, character-valued keywords can have lengths

up to the maximum 68 character length.

13. §5.2.3 Integer

The standard explicitly notes that the fixed format for complex integers does not
conform to the rules for ANSI FORTRAN list-directed read.

14. §5.2.4 Real Floating Point Number
The standard explicitly notes that the full precision of 64-bit values cannot be

expressed as a single value using the fixed format.

15. §5.2.5 Complex Integer Number
The standard does not support the fixed format for complex integers defined in the

FITS papers but is consistent with FORTRAN-77 list-directed read as required
in the FITS papers for free format. Because the fixed format of the FITS papers

did not conform to the rules for FORTRAN-77 list-directed I/O, consistency with
both was impossible. There are no known FITS files that use the fixed format for

complex integers that was defined in the FITS papers.

FITS Standard

74

APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

16. §5.2.6 Complex Floating Point Number

The standard does not support the fixed format for complex floating point numbers
defined in the FITS papers but is consistent with FORTRAN-77 list-directed read

as required in the FITS papers for free format. Because the fixed format of the
FITS papers did not conform to the rules for FORTRAN-77 list-directed I/O,

consistency with both was impossible. There are no known FITS files that use
the fixed format for complex floating point numbers that was defined in the FITS

papers.

17. §5.3 Units
The FITS papers recommend the use of SI units and identify certain other units

standard in astronomy. This standard codifies the recommendation and makes it

more specific by referring to the IAU Style Manual [7], while explicitly recommend-

ing degrees for angular measure and requiring degrees for celestial coordinates.

18. §5.4.1.1 Principal (mandatory keywords)

(a) SIMPLE keyword 4 The explicit prohibition against the appearance of the

SIMPLE keyword in extensions does not appear in the FITS papers.

(b) NAXIS keyword 4 The requirement that the NAXIS keyword may not be

negative is not explicitly specified in the FITS papers.

(c) NAXISn keyword 4 The requirement that the NAXISn keyword may not be

negative is not explicitly specified in the FITS papers.

19. §5.4.1.2 Conforming Extensions

(a) N bits 4 The requirement that N bits may not be negative is not explicitly

specified in the FITS papers.

(b) XTENSION keyword 4 That this keyword may not appear in the primary
header is only implied by the FITS papers; the prohibition is explicit in

this standard. The FITS papers name a FITS standards committee as the
keeper of the list of accepted extension type names.This standard specifically
identifies the committee and introduces the role of the FITS Support Office

as its agent.

20. §5.4.2 Other Reserved Keywords

That the optional keywords defined in the FITS papers are to be reserved for both
the primary HDUs and all extensions with the meanings and usage defined in those

papers, as in the standard, is not explicitly stated in all of them, although some
keywords are explicitly reserved in the papers describing the image and binary

table extensions.

FITS Standard

75

21. §5.4.2.1 Keywords Describing the History or Physical Construction of the HDU

(a) DATE Keyword 4 The notation for four-digit year number is YYYY rather
than the CCYY of the <DATExxxx Agreement=. The recommendation for use

of Universal Time in the superseded format with a two-digit year is not in
the FITS papers.

(b) BLOCKED keyword 4 The FITS papers require the BLOCKED keyword to ap-

pear in the first record of the primary header even though it cannot when
the value of NAXIS exceeds the values described in the text. They do not

address this contradiction. This standard deprecates the BLOCKED keyword.

22. §5.4.2.2 Keywords Describing Observations

(a) DATE-OBS Keyword 4 The recommendation for use of Universal Time in the

superseded format with a two-digit year is not in the FITS papers.

(b) EQUINOX and EPOCH keywords 4 This standard replaces the EPOCH keyword

with the more appropriately named EQUINOX keyword and deprecates the
EPOCH name.

23. §5.4.2.4 Commentary keywords

Keyword field is blank 4 Reference [1] contains the text <BLANK= to represent a

blank keyword field. The standard clarifies the intention.

24. §5.4.2.5 Array keywords

(a) BUNIT Keyword 4 The FITS papers recommend the use of SI units, degrees
as the appropriate unit for angles, and identify other units standard in as-

tronomy. This standard specically applies the recommendations of §5.3 to
the BUNIT keyword.

(b) CTYPEn,CRVALn,CDELTn,and CROTAn Keywords 4 This standard extends
the recommendations on units to coordinate axes, explicitly requiring decimal

degrees for coordinates.

(c) CRPIXn Keywords 4 This standard explicitly notes the ambiguity in the
location of the index number relative to an image pixel.

(d) CDELTn Keywords 4 The definition in the standard differs from that in the
FITS papers in that it provides for the case where the spacing between index

points varies over the grid. For the case of constant spacing, it is identical to
the specification in the FITS papers.

(e) DATAMAX and DATAMIN Keywords 4 The standard clarifies that the value

refers to the physical value represented by the array, after any scaling, not

FITS Standard

76

APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

the array value before scaling.The standard also notes that special values are

not to be considered when determining the values of DATAMAX and DATAMIN,
an issue not specifically addressed by the FITS papers or the FPA.

25. §7 Random Groups Structure

The standard deprecates the Random Groups structure.

26. §7.1.2 Reserved Keywords (random groups)
That the optional keywords defined in the FITS papers are to be reserved with the

meanings and usage defined in those papers,as in the standard, is not explicitly
stated in them.

27. §7.1.2.2 PSCALn Keywords 4 The default value is explicitly specified in the stan-

dard, whereas in the FITS papers it is assumed by analogy with the BSCALE

keyword.

28. §7.1.2.3 PZEROn Keywords 4 The default value is explicitly specified in the stan-

dard, whereas in the FITS papers it is assumed by analogy with the BZERO key-
word.

29. §8.1 ASCII Table Extension

The name ASCII table is given to the <tables= extension discussed in the FITS

papers to distinguish it from the binary table extension.

30. §8.1.1 Mandatory Keywords (ASCII table)

(a) NAXIS1 keyword 4 The requirement that the NAXIS1 keyword may not be

negative in an ASCII table header is not explicitly specified in the FITS

papers.

(b) NAXIS2 keyword 4 The requirement that the NAXIS2 keyword may not be

negative in an ASCII table header is not explicitly specified in the FITS

papers.

(c) TFIELDS keyword 4 The requirement that the TFIELDS keyword may not be

negative is not explicitly specified in the FITS papers.

(d) TFORMn keyword 4 The requirement that format codes must be specified in

upper case is implied but not explicitly specified in the FITS papers.

31. §8.1.2 Other Reserved Keywords (ASCII table)

That the optional keywords defined in the FITS papers are to be reserved with the
meanings and usage defined in those papers,as in the standard, is not explicitly

stated in them.

FITS Standard

77

(a) TUNITn Keywords 4 The FITS papers do not explicitly recommend the use

of any particular units for this keyword, although the reference to the BUNIT
keyword may be considered an implicit extension of the recommendation for

that keyword. This standard makes the recommendation more specific for
the TUNITn keyword by requiring conformance to the prescriptions in §5.3.

(b) TSCALn Keywords 4 The prohibition against use in A-format fields is stronger

than the statement in the FITS papers that the keyword <is not relevant=.

(c) TZEROn Keywords 4 The prohibition against use in A-format fields is stronger
than the statement in the FITS papers that the keyword <is not relevant=.

32. §8.3.2 Other Reserved Keywords (Binary Table)

The EXTNAME,EXTVER,EXTLEVEL,AUTHOR,and REFERENC keywords explicitly re-
served for binary tables in the defining paper are reserved in the standard under

the general prescription of §5.4.2.

(a) TUNITn Keywords 4 The FITS papers do not explicitly recommend the use

of any particular units for this keyword. This standard makes the recom-
mendation more specific for the TUNITn keyword by requiring conformance

to the prescriptions of §5.3.

(b) TDISPn Keywords 4 The version of the BINTABLE paper upon which the
FITS committees voted stated incorrectly that the values used to display bit

and byte arrays should be considered signed.This standard follows the text
in the published BINTABLE paper, which specifies that these values should be

unsigned.The BINTABLE paper does not specify how a TDISPn value for a field
of type P is interpreted; this standard explicitly mandates no interpretation

but allows conventions to provide interpretations. The requirement that

format codes must be specified in upper case is implied but not explicitly

specified in the BINTABLE paper.

(c) THEAP Keywords 4 The FITS papers state only that the keyword is re-
served for use in the convention described in in §8.3.5.This standard makes

the more specific statement that this keyword is used to provide the separa-
tion, in bytes, between the start of the main data table and the start of a

supplemental data area called the heap and identifies the default value.

(d) TDIMn Keywords 4 The FITS papers state only that the keyword is re-

served for use in the convention described in Appendix 8.3.2.This standard

makes the more specific statement that the contents of the value field con-

tain a character string describing how to interpret the contents of a field as

a multidimensional array.

33. §8.3.4 Data Display

The BINTABLE paper suggests that the format for display suggested by the TDISPn

FITS Standard

78

APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

should be understood as a Fortran-90 format or, where Fortran-90 is unavailable,

a FORTRAN-77 format. This standard explicitly describes the formats. The
statement in the standard concerning differences between E and D format codes,

which notes that the latter implies greater precision in the internal datum, does
not appear in the BINTABLE paper.

34. §9 Restrictions on Changes

The FITS papers do not provide for the concept of deprecation.

35. Appendix C Implementation on Physical Media

Material in the FITS papers specifying the expression of FITS on specific physical

media is not part of this standard; what is provided in the appendix is purely as

a guide to recommended practices.

FITS Standard

79

Appendix F

Summary of Keywords

(This Appendix is not part of the NOST FITS Standard, but is included for convenient

reference).

Principal Conforming ASCII Table Image Binary Table Random Groups
HDU Extension Extension Extension Extension Records

SIMPLE XTENSION XTENSION1 XTENSION2 XTENSION3 SIMPLE
BITPIX BITPIX BITPIX = 8 BITPIX BITPIX = 8 BITPIX

NAXIS NAXIS NAXIS = 2 NAXIS NAXIS = 2 NAXIS
NAXISn4 NAXISn4 NAXIS1 NAXISn4 NAXIS1 NAXIS1 = 0

EXTEND5 PCOUNT NAXIS2 PCOUNT= 0 NAXIS2 NAXISn4

END GCOUNT PCOUNT= 0 GCOUNT= 1 PCOUNT GROUPS= T

END GCOUNT= 1 END GCOUNT= 1 PCOUNT
TFIELDS TFIELDS GCOUNT

TBCOLn6 TFORMn6 END
TFORMn6 END

END

1 XTENSION= 9TABLE 9 for the ASCII table extension.
2 XTENSION= 9IMAGE 9 for the image extension.
3 XTENSION= 9BINTABLE9 for the binary table extension.
4 Runs from 1 through the value of NAXIS.
5 Required only if extensions are present.
6 Runs from 1 through the value of TFIELDS.

Table F.1: Mandatory FITS keywords for the structures described in this document.

FITS Standard

80 APPENDIX F. SUMMARY OF KEYWORDS

All Array 1 Conforming ASCII Table Binary Table Random Groups

HDUs HDUs Extension Extension Extension Records

DATE BSCALE EXTNAME TSCALn TSCALn PTYPEn

ORIGIN BZERO EXTVER TZEROn TZEROn PSCALn

BLOCKED2 BUNIT EXTLEVEL TNULLn TNULLn PZEROn

AUTHOR BLANK TTYPEn TTYPEn

REFERENCCTYPEn TUNITn TUNITn

COMMENTCRPIXn TDISPn

HISTORY CROTAn TDIMn

 CRVALn THEAP

DATE-OBS CDELTn

TELESCOPDATAMAX

INSTRUMEDATAMIN

OBSERVER

OBJECT

EQUINOX
EPOCH2

1 Primary HDU, image extension, user-defined HDUs with same array structure.
2 Deprecated.

Table F.2: Reserved FITS keywords for the structures described in this document.

Production Bibliographic Commentary Observation

DATE AUTHOR COMMENT DATE-OBS

ORIGIN REFERENC HISTORY TELESCOP

BLOCKED1 INSTRUME

OBSERVER

OBJECT

EQUINOX

EPOCH1

1 Deprecated.

Table F.3: General reserved FITS keywords described in this document.

FITS Standard

81

Appendix G

ASCII Text

(This appendix is not part of the NOST FITS standard; the material in it is based on

the ANSI standard for ASCII [14] and is included here for informational purposes.)
In the following table, the first column is the decimal and the second column the

hexadecimal value for the character in the third column.The characters hexadecimal 20
to 7E (decimal 32 to 126) constitute the subset referred to in this document as ASCII

text.

FITS Standard

82 APPENDIX G. ASCII TEXT

ASCII Control ASCII Text

dec hex char dec hex char dec hex char dec hex char

0 00 NUL 32 20 SP 64 40 @ 96 60 8
1 01 SOH 33 21 ! 65 41 A 97 61 a

2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c

4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e

6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 9 71 47 G 103 67 g

8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k

12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m

14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o

16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v

23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x

25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z

27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ^ 126 7E ~

31 1F US 63 3F ? 95 5F _ 127 7F DEL 1

1 Not ASCII Text

Table G.1: ASCII character set

FITS Standard

83

Appendix H

IEEE Floating Point Formats

(The material in this Appendix is not part of this standard; it is adapted from the

IEEE-754 floating point standard [15] and provided for informational purposes. It is

not intended to be a comprehensive description of the IEEE formats; readers should

refer to the IEEE standard.)

FITS recognizes all IEEE basic formats, including the special values.

H.1 Basic Formats

Numbers in the single and double formats are composed of the following three fields:

1. 1-bit sign s

2. Biased exponent e = E + bias

3. Fraction f = "b 1b2 · · · bp21

The range of the unbiased exponent E shall include every integer between two values
Emin and Emax , inclusive, and also two other reserved values Emin 2 1 to encode ±0

and denormalized numbers, and E max +1 to encode ±> and NaNs. The foregoing
parameters are given in Table H.1.Each nonzero numerical value has just one encoding.

The fields are interpreted as follows:

H.1.1 Single

A 32-bit single format number X is divided as shown in Fig. H.1. The value v of X is
inferred from its constituent fields thus

1. If e = 255 and f 6= 0, then v is NaN regardless of s

2. If e = 255 and f = 0, then v = (21) s>

FITS Standard

84 APPENDIX H. IEEE FLOATING POINT FORMATS

Format

Parameter Single Double

Single Extended Double Extended
p 24 g 32 53 g 64
Emax +127 g +1023 +1023 g +16383
Emin 2126 f 21022 21022 f 216382

Exponent bias +127 unspecified +1023 unspecified
Exponent width in bits 8 g 11 11 g 15

Format width in bits 32 g 43 64 g 79

Table H.1: Summary of Format Parameters

3. If 0 < e < 255, then v = (21) s2e2127 (1 " f)

4. If e = 0 and f 6= 0, then v = (21) s2e2126 (0 " f) (denormalized numbers)

5. If e = 0 and f = 0, then v = (21) s0 (zero)

1 8 23widths

s e t

msb lsb msb lsborder

Figure H.1: Single Format. msb means most significant bit, lsb means least significant
bit

H.1.2 Double

A 64-bit double format number X is divided as shown in Fig. H.2. The value v of X is

inferred from its constituent fields thus

1. If e = 2047 and f 6= 0, then v is NaN regardless of s

2. If e = 2047 and f = 0, then v = (21) s>

3. If 0 < e < 2047, then v = (21) s2e21023 (1 " f)

4. If e = 0 and f 6= 0, then v = (21) s2e21022 (0 " f) (denormalized numbers)

FITS Standard

H.2. BYTE PATTERNS 85

5. If e = 0 and f = 0, then v = (21) s0 (zero)

1 11 52widths

s e t

msb lsb msb lsborder

Figure H.2: Double Format. msb means most significant bit, lsb means least significant
bit

H.2 Byte Patterns

Table H.2 shows the types of IEEE floating point value, whether regular or special,

corresponding to all double and single precision hexadecimal byte patterns.

FITS Standard

86 APPENDIX H. IEEE FLOATING POINT FORMATS

IEEE value Double Precision Single Precision

+0 0000000000000000 00000000

denormalized 0000000000000001 00000001

to to

000FFFFFFFFFFFFF 007FFFFF

positive underflow 0010000000000000 00800000

positive numbers 0010000000000001 00800001

to to

7FEFFFFFFFFFFFFE 7F7FFFFE
positive overflow 7FEFFFFFFFFFFFFF 7F7FFFFF

+> 7FF0000000000000 7F800000
NaN1 7FF0000000000001 7F800001

to to
7FFFFFFFFFFFFFFF 7FFFFFFF

20 8000000000000000 80000000
negative 8000000000000001 80000001

denormalized to to
800FFFFFFFFFFFFF 807FFFFF

negative underflow 8010000000000000 80800000
negative numbers 8010000000000001 80800001

to to
FFEFFFFFFFFFFFFE FF7FFFFE

negative overflow FFEFFFFFFFFFFFFF FF7FFFFF
2> FFF0000000000000 FF800000

NaN1 FFF0000000000001 FF800001
to to

FFFFFFFFFFFFFFFF FFFFFFFF

1 Certain values may be designated as quiet NaN (no diagnostic when used) or signaling

(produces diagnostic when used) by particular implementations.

Table H.2: IEEE Floating Point Formats

FITS Standard

87

Appendix I

Reserved Extension Type Names

(This Appendix is not part of the NOST FITS Standard, but is included for informa-

tional purposes. It describes the extension type names registered as of the date this
standard was issued.) A current list is available from the FITS Support Office at

http://fits.gsfc.nasa.gov/xtension.html

or

ftp://nssdc.gsfc.nasa.gov/pub/fits/xtension.lis

FITS Standard

88 APPENDIX I. RESERVED EXTENSION TYPE NAMES

Type Name Status Reference Sponsor Comments

9A3DTABLE9 L [17] NRAO Prototype binary table design used
in AIPS; subset of BINTABLE.

9BINTABLE9 S [10] IAU Binary table extension.

Available at FITS Archives in files
/documents/standards/bintable.aa*

of 1995-Feb-06.Note: only main
document, excluding appendixes.

9COMPRESS9 R none GSFC Suggested extension name by

A/WWW A. Warnock. Preliminary proposal
in FITS archives in the

files compress.*.

9DUMP 9 R none none Suggested extension name for
binary dumps.

No full proposal submitted.

9FILEMARK9 R none NRAO Suggested for equivalent
of tape mark on other media.

No full proposal submitted.

9IMAGE 9 S [9] IAU Image extension.

9IUEIMAGE9 L [18] IUE Local extension originally
defined for archiving

special IUE data products,

Identical to IMAGE.

9TABLE 9 S [5] IAU ASCII table extension.

9VGROUP 9 R none GSFC Suggested extension name for

HDF Vgroups (D. Jennings)

No formal proposal; not used in

current HDF-FITS

conversion proposals

Table I.1: Reserved Extension Type Names

FITS Standard

89

Code Significance

D Draft extension proposal for discussion by regional FITS committees.

L Local FITS extension.
P Proposed FITS extension approved by regional FITS committees

but not by IAU FITS Working Group.
R Reserved type name for which a full draft proposal has not been submitted.

S Standard extension approved by IAU FITS Working Group and
endorsed by the IAU.

Table I.2: Status Codes

Acronym Meaning

NRAO National Radio Astronomy Observatory

AIPS Astronomical Image Processing System

A/WWW A/WWW Enterprises

HDF Hierarchical Data Format

Table I.3: Acronyms in List of Registered Extensions

FITS Standard

90 APPENDIX I. RESERVED EXTENSION TYPE NAMES

FITS Standard

91

Appendix J

NOST Publications

Document Title Date Status

NOST 100-0.1 FITS Standard December, 1990 Draft Standard

NOST 100-0.2 FITS Implementation Standard June, 1991 Revised Draft Standard

NOST 100-0.3 FITS Implementation Standard December, 1991 Revised Draft Standard
NOST 100-1.0 FITS Definition Standard March, 1993 Proposed Standard
NOST 100-1.0 FITS Definition Standard June, 1993 NOST Standard

NOST 100-1.1 FITS Definition Standard June, 1995 Proposed Standard
NOST 100-1.1 FITS Definition Standard September, 1995 NOST Standard

NOST 100-1.2 FITS Definition Standard April, 1998 Draft Standard
NOST 100-2.0 FITS Definition Standard March, 1999 NOST Standard

Table J.1: NOST Publications

FITS Standard

92 APPENDIX J. NOST PUBLICATIONS

FITS Standard

INDEX 93

Index

Nbits , 19, 21, 32, 74
TABLE, extension, 35

AIPS, 88

AIPS, Going, 6

angle, 18, 26, 75
angular measure, 18

ANSI, 7
ANSI, ASCII, 6

ANSI, FORTRAN-77, 6
ANSI, IEEE, 6, 30, 48

ANSI, tapes, 65
ANSI, X3.431977, 6

ANSI, X3.931978, 6
array, 7, 24

array descriptor, 48, 53
array size, 19, 20, 31, 34

array value, 7, 9, 24, 25, 71, 76
array, multidimensional, 12

array, substring, 2, 61
array, variable length, 50, 53

ASCII blank, 7
ASCII character, 3, 7, 29, 35, 38, 81

ASCII table, vii, 1, 2, 5, 35, 76, 87
ASCII text, vii, 3, 7, 11, 12, 16, 24, 38,

47, 71, 81
ASCII, ANSI, 6

AUTHOR, 24

Basic FITS, vii, 1, 7, 71
binary table, vii, 1, 2, 5, 9, 10, 31, 41,

61, 79
BINTABLE, 41, 88

BINTABLE extension, 41, 61, 79, 87

BITPIX, 19, 21, 25, 26, 30, 32, 35, 40,
42

BLANK, 25, 30, 75
block size, vii, 1, 2

BLOCKED, 22, 27, 75
blocking, 5, 71, 72

BSCALE, 24, 25, 30, 76
BUNIT, 25, 75, 77

byte order, 29
BZERO, 25, 30, 76

card image, 7, 12, 15
case sensitivity, 15, 16

CDELTn, 25, 75
character string, 16, 46, 47

COMMENT, 24
complex data representation, 18, 48, 73

COMPRESS, 88
conforming extension, 8, 10, 11, 13, 21,

71, 72, 74
coordinate axis, 10, 25

coordinate system, 23, 25
coordinate value, 25

CROTAn, 25, 75
CRPIXn, 25, 75

CRVALn, 25, 75
CTYPEn, 25, 75

DATAMAX, 26, 75

DATAMIN, 26, 75
DATE, four-digit year form, 21

DATE, two-digit year form, 22
DATE-OBS, 22, 75

DATExxxx, 23

FITS Standard

94 INDEX

deprecate, 2, 8, 22, 23, 31, 55, 71, 75, 76

DUMP, 88

END, 20, 33, 36, 41, 43, 52

EPOCH, 23, 75

EQUINOX, 23, 75

EXTEND, 21, 22, 27, 35, 40, 41

extension, vii, 1, 2, 8, 10, 11, 13, 26, 27,

29, 66, 74, 87

extension name, 3, 8, 10, 13, 26

extension registration, 13, 72

extension type name, 21

extension, conforming, 8, 10, 11, 13, 21,
71, 72, 74

extension, standard, 10, 13, 21, 35, 40,

41, 72

EXTLEVEL, 26

EXTNAME, 8, 26

EXTVER, 26

field, empty, 43, 47

FILEMARK, 88

fill, 12, 15, 34, 37, 38, 46, 72

FITS structure, 2, 739, 11, 13, 21, 55,
71

FITS Support Office, 13, 21, 72, 74

FITS Working Group, vii, 1

floating point, 17, 48, 83

floating point FITS agreement, vii, 5, 71

floating point, 64 bit, 73

floating point, complex, 18, 48, 74

format, 36

format, data, vii, 29

format, extension, 8

format, fixed, 16, 73

format, free, 16

format, keywords, 16

format, standard, 1

FORTRAN-77, 36

FORTRAN-77, ANSI manual, 6

FORTRAN-77, format, 38

FORTRAN-77, list-directed input, 73

FORTRAN-77, list-directed read, 73, 74

fraction, 8, 71

GCOUNT, 21, 32334, 36, 41, 42
Going AIPS, 6

group parameter value, 8, 33, 34

GROUPS, 33

HDU, 8, 19

HDU, extension, 8, 11

HDU, primary, 8313

heap, 45, 51, 53, 77

HISTORY, 24

hyphen, 15

IAU, vii, 133, 5, 9, 71

IAU Style Manual, 5, 18, 74
IAU, 1988 General Assembly, vii

IAUFWG, vii, 9, 13, 21

IEEE, 9

IEEE floating point, 3, 30

IEEE NaN, 9

IEEE special values, 9, 26, 30, 76, 83
IEEE, ANSI, 6

IMAGE, 40

image extension, vii, 1, 2, 5, 40, 41, 79

INSTRUME, 23

integer, 16-bit, 29, 47
integer, 32-bit, 29, 47, 48

integer, 64-bit, 30, 48

integer, 8-bit, 29, 47

integer, complex, 18, 73

interferometry, 31

IUE, 6, 9
IUEIMAGE, 88

keyword, commentary, 15, 24

keyword, indexed, 9, 15, 19, 71

keyword, mandatory, 35, 73

keyword, new, 26

keyword, order, 19, 20, 31, 35

FITS Standard

INDEX 95

keyword, required, 1, 2, 9, 18, 20, 21, 31,

40, 41, 74, 76
keyword, reserved,1, 2, 10, 21, 33, 37,

44, 72, 74, 76
keyword, restrictions, 27

keyword, valid characters, 15

list-directed input, 73

list-directed read, 73
logical value, 17

mantissa, 8, 9, 71

NaN, IEEE, 48

NAXIS, 11, 12, 19, 21, 22, 32, 34, 35,
41, 42, 74, 75

NAXIS1, 32, 35, 38, 42, 43, 45, 46, 52,
76

NAXIS2, 35, 38, 42, 45, 46, 52, 76
NAXISn, 11, 12, 19, 21, 25, 32334, 41,

74
NOST, 9

NRAO, 88
NULL, ASCII, 7, 47

OBJECT, 23

OBSERVER, 23
offset, 52

order, array index, 12
order, byte, 29

order, extensions, 13
order, keyword, 15, 19, 20, 31, 35

order, FITS structures, 11
ORIGIN, 22

parameter, vii, 33, 34

PCOUNT, 21, 32334, 36, 41, 42, 52
physical value, 7, 9, 24326, 33, 34, 37,

44, 71, 75
primary data array, 7, 9, 11, 12, 20, 24,

32, 34, 41, 72
primary header, 2, 7, 10, 11, 18, 21, 27,

31, 66, 75

PSCALn, 33, 34, 76

PTYPEn, 33, 34
PZEROn, 34, 76

random groups, vii, 1, 2, 5, 8, 24, 31, 76

random groups array, vii, 34
REFERENC, 24

reference point, 10, 25, 72

registration, extension, 13

repeat count, 10, 43, 47

scaling, data, 25, 34, 37, 44, 75

sign bit, 29
sign character, 38

significand, 9
SIMPLE, 32

SIMPLE, before random groups, 31
SIMPLE, in primary header, 18, 19

SIMPLE, in special records, 13
slash, 16

special records, 8, 10, 11, 13
special values, IEEE, 48

standard extension, 10, 13, 21, 35, 40,
41, 72

substring arrays, 61

TABLE, 35

TABLE extension, 76, 79, 88
tape, 9-track half-inch, vii

TBCOLn, 36
TDIMn, 46, 63, 77

TDISPn, 45, 77
TELESCOP, 23

TFIELDS, 36, 42, 76
TFORMn, 36, 43, 47, 48, 51, 61, 76

THEAP, 45, 52, 77
time system, 22

TNULLn, 37, 38, 44, 47, 48
TSCALn, 37, 38, 44, 52, 77

TTYPEn, 37, 44
TUNITn, 38, 44, 77

twos-complement, 29, 30

FITS Standard

96 INDEX

TZEROn, 37, 38, 44, 52, 77

underscore, 15, 38

units, 9, 10, 18, 25, 38, 41, 44, 74, 75, 77
Universal Time, 22, 75

value, 21, 22

value, undefined, 37, 38, 44
variable length array, 50, 53

XTENSION, 10, 13, 21, 26, 35, 40, 41,

74

FITS Standard

