FLUXGATE MAGNETOMETER CALIBRATION FOR

MASCOT

MASCOT-MAG-TR-0008

Issue: 1 Revision: 1

January 16, 2014

Protocol and Analysis of the

MASCOT Fluxgate Sensor M1 & FM

Calibration

Dr. Ingo Richter

Institut für Geophysik und extraterrestrische Physik Technische Universität Braunschweig Mendelssohnstraße 3, 38106 Braunschweig Germany

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ΙΟΓΓ Technische Universität Braunschweig	Page:	Ι

Contents

1	Inti	roduction	1
2	Me 2.1	asurements on January 10, 2014 Data	5 6
	2.2	DC-Analysis at Environmental Temperature	6
		2.2.1 Calibration on 3 Linear Axes	6
		2.2.2 OFFSET Calculation	13
3	Me	asurements on January 11, 2014	15
	3.1	Data	15
4	Me	asurements on January 12, 2014	15
	4.1	Data	15
5	Me	asurements on January 13, 2014	16
	5.1	Data	16
	5.2	DC-Analysis at Moderate Low Temperature	17
	5.3	DC-Analysis at Low Temperature	17
	5.4	DC-Analysis at Very Low Temperature	17
6	Me	asurements on January 14, 2014	18
	6.1	Data	18
	6.2	DC-Analysis at Moderate low Temperature	19
	6.3	DC-Analysis at Moderate High Temperature	19
	6.4	AC-Analysis at Moderate High Temperature	19
	0 5	b.4.1 Frequency Measurements	20
	0.5	DC-Analysis at High Temperature	25
	0.0 6.7	AC-Analysis at High Temperature	20
	0.7	6.7.1 Collibration on 3 Linear Aves	20
	68	AC Analysis at Vory High Tomporature	20 22
	6.0	DC-Analysis at Very High Temperature	- 22 - 22
	0.9	DC-Analysis at very high temperature	55
7	Me	asurements on January 15, 2014	34
	7.1	Data	34
	7.2	DC-Analysis at Room Temperature with Different Phase Values	35
	7 9	(.2.1 Calibration on 3 Linear Axes	35
	7.3	AU-Analysis at Koom Temperature	42
	7 4	(.3.1 Frequency Measurements	42
	1.4	7.4.1 Colibration on 2 Lincon Avec	41
		(.4.1 Cambration on 5 Linear Axes	41 54
		(.4.2 OFF 5E1 Calculation	94

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ТGСГ Technische Universität Braunschweig	Page:	II

8	Con	nbined Measurements from January 10 – 15, 2014	56
	8.1	Thermal-Analysis	56
		8.1.1 Temperature Calibration on Linear Axes	56
		8.1.2 Temperature Calibration of the Sensor Offset	64
		8.1.3 Temperature Calibration of the AC Transfer Function	69
	8.2	Complete Temperature Profile	74
9	Ma t 9.1	thematical Description of the Calibration Basic Principle	75 75
10	Nor	nenclature	79

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 1

1 Introduction

This document describes the ground calibration of the MASCOT Fluxgate magnetometer performed at the Magnetsrode Calibration facility operated by the Institute for Geophysics and extraterrestrial Physics, TU Braunschweig.

The tests were executed from January 10 - January 15, 2014.

Part Identification:

Sensor:	M1
Electronics	\mathbf{FM}

Key Personnel:

David Hercik:	operating FGM
Ingo Richter:	operating MRode Facility
Reiko Namura:	visiting and assisting

General Setup

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor Electronics placed in House 2 / Mainroom.
- EGSE placed in House 2 / Mainroom.
- EGSE and Electronics were powered by one single Power Supply in House 2. Voltage: +5V / Current: +0.0678A
 Voltage: -5V / Current: -0.0101A
 Voltage: +3.3V / Current: +0.0432A
- Position 1: Standard Alignment $X_m = X_c, Y_m = Y_c, Z_m = Z_c$ Elevation= 0°. Azimuth= 180°.
- Position 2: Turned Position for XY Offset Measurements $X_m = -X_c, Y_m = -Y_c, Z_m = Z_c$ Elevation= 0°. Azimuth= 0°.
- Position 3: Normal Position for Z Offset Measurements $X_m = -Z_c, Y_m = -Y_c, Z_m = -X_c$ Elevation=90°. Azimuth= 0°.
- Position 4: Turned Position for Z Offset Measurements $X_m = -Z_c, Y_m = Y_c, Z_m = X_c$ Elevation=90°. Azimuth= 180°.

MASCOT	Document: MAS-MAG-TR-0008 Issue: 1
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision:1Date:January 16, 2014Page:2

- The pictures were taken before rotating the box to the vertical orientation.
- TEMPCTRL-Parameters for Heating: Field-Active-Time: 25s SOL controlled, Delay after SOL: 8s Max. Heating Time: 20s Heating-Profile: *manual* Heater-Select: automatic Smart_heat: on
- TEMPCTRL-Parameters for Cooling: Field-Active-Time: 25s SOL controlled, Delay after SOL: 8s Max. Cooling Time: 8s Heating-Profile: manual Heater-Select: automatic Smart_heat: on
- IP-Adressses: EGSE: 192.168.124.40 Terminal: 192.168.124.50
- MRode-Terminal software: TERMINAL_17_MASCOT.vi
- DUT parameters: Phase X: 104 Phase Y: 107 Phase Z: 109 Samplerate: 10 Hz
- The MCF has been calibrated electrically and geometrically in the weeks just before the MASCOT calibration. The results are described in the report MR-IGEP-TR-1009.

REMARKS:

- The Analysis has been performed using a nominal conversion factor of 1.0 nT/ADCcounts.
- All values (e.g Offsets) given in engineering nanotesla (enT) have to be multiplied with the calculated sensitivities to obtain real nanotesla values.

MACOT	Document:	MAS-MAG-TR-0008
MASUUI	Issue:	1
	Revision:	1
ICTD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	3

Standard Sensor Setup:

Figure 1: The MASCOT EGSE in House 2

Figure 2: The FM electronics board in House 2

MASCOT	Document:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 4

Figure 3: The M1 sensor mounted in the thermal box in POSITION 1 , view from top

Figure 4: The M1 sensor mounted in the thermal box in POSITION 1 , view from south

MASCOT	Document:	MAS-MAG-TR-0008
	Issue:	1
	Revision:	1
ICTD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	5

2 Measurements on January 10, 2014

The MASCOT equipment was shipped to MRode and everything was installed in the afternoon. The sensor was mounted to the brown sensor plate and placed in the thermal box. The electronics and EGSE was put on the small desk near the coilsystem. The sensor was rotated to POSITION 1.

First test of the system at 15:30.

Initial Reading of the thermistors:

T_{59}	=	$16.6^{\circ}\mathrm{C}$
$T_{\rm ELEC}$	=	$21.23^{\circ}\mathrm{C}$
$T_{\rm SENS}$	=	$20.44^{\circ}\mathrm{C}$

A first test of the M1 Sensor revealed the correct soldering of the components. Application of 10000 nT fields in all main axes in Standard orientation yielded:

$X_{\rm m}$	=	$X_{\rm c}$
$Y_{\rm m}$	=	$Y_{ m c}$
$Z_{\rm m}$	=	$Z_{\rm c}$

MACCOT		nent: MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revisi	on: 1
ICDD Institut für Geophysik u	extraterr. Physik Date:	January 16, 2014
IGEΓ Technische Universitä	t Braunschweig Page:	6

2.1 Data

CCD	Configuration	Remark
File	File	
14-01-10\16-25-52.CCR	OFFSET_200.MAG	
14-01-10\16-35-17.CCR	NULL.MAG	
14-01-10\16-35-54.CCR	NULL.MAG	
14-01-10\16-36-30.CCR	LIN11000XYZ.MAG	
14-01-10\17-07-01.CCR	LIN11000XYZ.MAG	
14-01-10\17-37-32.CCR	LIN11000XYZ.MAG	
14-01-10\18-08-03.CCR	LIN11000XYZ.MAG	
14-01-10\18-38-35.CCR	LIN11000XYZ.MAG	
14-01-10\19-09-06.CCR	LIN11000XYZ.MAG	
14-01-10\19-39-37.CCR	LIN11000XYZ.MAG	
14-01-10\20-10-07.CCR	LIN11000XYZ.MAG	
14-01-10\20-40-39.CCR	LIN11000XYZ.MAG	
14-01-10\21-11-09.CCR	LIN11000XYZ.MAG	
14-01-10\21-41-40.CCR	LIN11000XYZ.MAG	
14-01-10\22-12-11.CCR	NULL.MAG	

2.2 DC-Analysis at Environmental Temperature

A standard linearity and offset measurement was performed at $16^{\circ}\mathrm{C}.$

2.2.1 Calibration on 3 Linear Axes

Used Files:

CCD File	Configuration File	Remark
14-01-10\17-37-32.CCR	LIN11000XYZ.MAG	

Parameter File: PARAMETER_LIN__14-01-10_17-37-32.CPF

MACOT	Document:	MAS-MAG-TR-0008
MASUUI	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEP Technische Universität Braunschweig	Page:	7

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.999545 & +0.008286 & +0.028999 \\ -0.008137 & +0.999953 & -0.005235 \\ -0.029041 & +0.004996 & +0.999566 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +1^{\circ} 43' 42''$
Angle (Y_c, Y_m) : $\mu_y = +0^{\circ} 33' 16''$
Angle (Z_c, Z_m) : $\nu_z = +1^{\circ} 41' 19''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: SOLARTRON Fields applied for 24.0 s Mean Sensor Temperature: 16.6°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMICY = DYNAMICZ = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (21.089, 11.377, -4.858)$ nT

	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
$1 \bigcirc \Box \Gamma$ Technische Universität Braunschweig	Page:	8

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

[Values in eng nT]	s_x	s_y	s_z
Minimum	0.020	0.017	0.015
Mean	0.059	0.045	0.052
Maximum	0.150	0.114	0.147

Calibration Parameter:

$$\begin{array}{rcl} \text{Transfermatrix:} & \underline{\phi} = \underline{R}_{\text{nom}} \underline{\rho} \underline{\omega} \underline{\sigma} &= \begin{pmatrix} +0.997848 & +0.008339 & +0.028972 \\ -0.013611 & +0.999085 & -0.005230 \\ -0.034122 & +0.007074 & +0.998655 \end{pmatrix} \\ \text{Reduced Transfermatrix:} & \underbrace{\widetilde{\phi}} = \underline{\omega} \underline{\sigma} &= \begin{pmatrix} +0.998496 & +0.000000 & +0.000000 \\ -0.005513 & +0.999142 & +0.000000 \\ -0.005100 & +0.002083 & +0.999089 \end{pmatrix} \\ \text{Sensitivity:} & \underline{\sigma} &= \begin{pmatrix} +0.998496 & +0.000000 & +0.000000 \\ +0.000000 & +0.999127 & +0.000000 \\ +0.000000 & +0.999127 & +0.000000 \\ +0.000000 & +0.000000 & +0.999074 \end{pmatrix} \\ \text{Misalignment:} & \underline{\omega} &= \begin{pmatrix} +1.00000 & +0.000000 & +0.000000 \\ -0.005522 & +1.00015 & +0.000000 \\ -0.005107 & +0.002085 & +1.000015 \end{pmatrix} \end{array}$$

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{\rm x,y} &= +89^{\circ} \ 41'1'' \\ \xi_{\rm x,z} &= +89^{\circ} \ 42'29'' \\ \xi_{\rm y,z} &= +90^{\circ} \ 7'4'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	
Standard Deviation	0.319	0.112	0.678
Maximum Error	0.815	0.214	1.614
Minimum Error	-0.867	-0.418	-0.963

MACOT	Document:	MAS-MAG-TR-0008
MASCUT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	9

Figure 5: Applied Fields

Figure 6: Measured Data

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 10

Figure 7: Model Quality - Differences of applied field and modelled measurement data

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
IODD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEP Technische Universität Braunschweig	Page:	11

Figure 8: RESIDUALS vs FLD X

Figure 10: RESIDUALS vs FLD Z $\,$

MASCOT	Document:	MAS-MAG-TR-0008
MADUUI	Issue:	1
	Revision:	1
ICTD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLI Technische Universität Braunschweig	Page:	12

Figure 11: Coil System Temperature

Figure 12: Sensor Temperature

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ТСГ Technische Universität Braunschweig	Page:	13

2.2.2 OFFSET Calculation

In this section the instrument offsets and the residual field of the Coil System will be evaluated. Measurements at two orientations for each component act as input for the offset calculation. From the "normal" (0-degrees) and "turned" (180-degrees) orientations the offsets and residual fields can be derived:

$$B_{\text{off}} = \frac{B_{\text{normal}} + B_{\text{turned}}}{2}$$
$$B_{\text{res}} = \frac{B_{\text{normal}} - B_{\text{turned}}}{2}$$

Used Offset Measurements:

CCD	Configuration	Remark	
File	File		
14-01-10\16-25-52.CCR	OFFSET_200.MAG		

Parameter File: OFF_PARAMETER__14-01-10-16-25-52.OPF

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
Ι΄΄΄Γ Technische Universität Braunschweig	Page:	14

Calibration Parameter:

	Component	Offset [enT]	Standard deviation [enT]
	X	19.58	0.084
Sensor Offsets:	Y	13.23	0.117
		7.75	0.082

	Component	$B_{\rm res} [{\rm enT}]$
Residual Field of the Coil System:	X	3.19
	Y	-2.26
	Z	-1.76

Remark: Residual field is given in actual DUT coordinates, not in coil-coordinates!

Zerofield measurements in dynamically compensated earthfield conditions were conducted during the night and for the weekend.

3 Measurements on January 11, 2014

No personnel around today. Zerofield measurements continued.

3.1 Data

CCD File	Configuration File	Remark
14-01-11\10-12-31.CCR 14-01-11\22-12-51.CCR	NULL.MAG NULL.MAG	

Remark:

Due to an unknown error the data transmission from the EGSE to the MRode CDRS stopped at about 22:00. Therefore, no further data are available from this weekend.

4 Measurements on January 12, 2014

No personnel around today. Zerofield measurements continued but no MAG data were collected.

4.1 Data

CCD File	Configuration File	Remark
14-01-12\10-13-11.CCR 14-01-12\22-13-31.CCR	NULL.MAG NULL.MAG	

5 Measurements on January 13, 2014

The cooling system was activated at 07:42. The first temperature goal was set to -10° C. The pressurizing system was not used, as the LN2-vessel has been already installed 3 days ago and the internal pressure was at the necessary level of 0.4 bar.

5.1 Data

CCD	Configuration	Remark
File	File	
14-01-13\07-29-31.CCR	NULL.MAG	
14-01-13\07-42-04.CCR	LIN11000XYZ.MAG	
14-01-13\08-12-34.CCR	LIN11000XYZ.MAG	
14-01-13\08-43-55.CCR	OFFSET_200.MAG	
14-01-13\08-52-32.CCR	LIN11000XYZ.MAG	
14-01-13\09-23-03.CCR	LIN11000XYZ.MAG	
14-01-13\09-53-35.CCR	LIN11000XYZ.MAG	
14-01-13\10-25-04.CCR	OFFSET_200.MAG	
14-01-13\10-32-53.CCR	LIN11000XYZ.MAG	
14-01-13\11-03-25.CCR	LIN11000XYZ.MAG	
14-01-13\11-33-56.CCR	LIN11000XYZ.MAG	
14-01-13\12-04-27.CCR	LIN11000XYZ.MAG	
14-01-13\12-34-58.CCR	LIN11000XYZ.MAG	
14-01-13\13-05-30.CCR	LIN11000XYZ.MAG	
14-01-13\13-36-00.CCR	LIN11000XYZ.MAG	
14-01-13\14-10-49.CCR	OFFSET_200.MAG	
14-01-13\14-24-29.CCR	FREQ10000.MAG	
14-01-13\15-10-49.CCR	LIN11000XYZ.MAG	
14-01-13\15-41-19.CCR	LIN11000XYZ.MAG	
14-01-13\16-11-49.CCR	LIN11000XYZ.MAG	
14-01-13\16-42-19.CCR	LIN11000XYZ.MAG	
14-01-13\17-12-49.CCR	LIN11000XYZ.MAG	
14-01-13\17-43-19.CCR	LIN11000XYZ.MAG	
14-01-13\18-13-50.CCR	LIN11000XYZ.MAG	
14-01-13\18-44-21.CCR	LIN11000XYZ.MAG	
14-01-13\19-14-52.CCR	LIN11000XYZ.MAG	
14-01-13\19-45-22.CCR	LIN11000XYZ.MAG	
14-01-13\20-15-53.CCR	LIN11000XYZ.MAG	
14-01-13\20-46-24.CCR	LIN11000XYZ.MAG	
14-01-13\21-16-56.CCR	LIN11000XYZ.MAG	
14-01-13\21-47-27.CCR	LIN11000XYZ.MAG	
14-01-13\22-17-57.CCR	LIN11000XYZ.MAG	
14-01-13\22-48-27.CCR	LIN11000XYZ.MAG	
14-01-13\23-18-58.CCR	LIN11000XYZ.MAG	
14-01-13\23-49-28.CCR	LIN11000XYZ.MAG	

5.2 DC-Analysis at Moderate Low Temperature

Linearity and offset measurements were performed at $T_{59} = -12^{\circ}$ C.

Thermal Analysis: refer to section 8.

Afterwards the DUT was cooled down to $\sim -40^{\circ}$ C.

5.3 DC-Analysis at Low Temperature

Linearity and offset measurements were performed at $T_{59} = -41^{\circ}$ C.

Thermal Analysis: refer to section 8.

Afterwards the DUT was cooled down further to $\sim -80^{\circ}$ C.

5.4 DC-Analysis at Very Low Temperature

Linearity and offset measurements were performed at $T_{59} = -85^{\circ}$ C.

Thermal Analysis: refer to section 8.

Afterwards the heating and cooling system was switched off. Linearity measurements in dynamically compensated earthfield conditions were performed during the night. These measurements started at 15:10.

6 Measurements on January 14, 2014

07:40 inspection of the system. Everything was ok. The linearity measurement was stopped. The system was at a temperature of $T_{59} = -18.1^{\circ}$.

6.1 Data

CCD	Configuration	Remark
File	File	
14-01-14\00-19-59.CCR	LIN11000XYZ.MAG	
14-01-14\00-50-30.CCR	LIN11000XYZ.MAG	
14-01-14\01-20-59.CCR	LIN11000XYZ.MAG	
14-01-14\01-51-29.CCR	LIN11000XYZ.MAG	
14-01-14\02-21-59.CCR	LIN11000XYZ.MAG	
14-01-14\02-52-29.CCR	LIN11000XYZ.MAG	
14-01-14\03-22-59.CCR	LIN11000XYZ.MAG	
14-01-14\03-53-29.CCR	LIN11000XYZ.MAG	
14-01-14\04-24-00.CCR	LIN11000XYZ.MAG	
14-01-14\04-54-30.CCR	LIN11000XYZ.MAG	
14-01-14\05-25-02.CCR	LIN11000XYZ.MAG	
14-01-14\05-55-33.CCR	LIN11000XYZ.MAG	
14-01-14\06-26-04.CCR	LIN11000XYZ.MAG	
14-01-14\06-56-35.CCR	LIN11000XYZ.MAG	
14-01-14\07-27-06.CCR	LIN11000XYZ.MAG	
14-01-14\07-41-16.CCR	OFFSET_200.MAG	
14-01-14\07-53-39.CCR	LIN11000XYZ.MAG	
14-01-14\09-53-24.CCR	LIN11000XYZ.MAG	
14-01-14\10-24-51.CCR	OFFSET_200.MAG	
14-01-14\10-32-56.CCR	FREQ10000.MAG	
14-01-14\11-18-08.CCR	LIN11000XYZ.MAG	
14-01-14\11-48-38.CCR	LIN11000XYZ.MAG	
14-01-14\12-19-09.CCR	LIN11000XYZ.MAG	
14-01-14\12-49-39.CCR	LIN11000XYZ.MAG	
14-01-14\13-21-06.CCR	OFFSET_200.MAG	
14-01-14\13-28-50.CCR	FREQ10000.MAG	
14-01-14\14-12-05.CCR	LIN11000XYZ.MAG	
14-01-14\14-42-36.CCR	LIN11000XYZ.MAG	
14-01-14\15-13-07.CCR	LIN11000XYZ.MAG	
14-01-14\15-44-27.CCR	OFFSET_200.MAG	
14-01-14\15-57-46.CCR	FREQ10000.MAG	
14-01-14\16-43-36.CCR	LIN11000XYZ.MAG	
14-01-14\17-14-07.CCR	LIN11000XYZ.MAG	
14-01-14\17-44-37.CCR	LIN11000XYZ.MAG	
14-01-14\18-15-07.CCR	LIN11000XYZ.MAG	
14-01-14\18-45-37.CCR	LIN11000XYZ.MAG	
14-01-14\19-16-08.CCR	LIN11000XYZ.MAG	
14-01-14\19-46-39.CCR	LIN11000XYZ.MAG	
14-01-14\20-17-10.CCR	LIN11000XYZ.MAG	

MASC	TOT	Document: Issue:	MAS-MAG-TR-0008
IGEP	Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
	Technische Universität Braunschweig	Page:	19

14-01-14\20-47-40.CCR	LIN11000XYZ.MAG
14-01-14\21-18-11.CCR	LIN11000XYZ.MAG
14-01-14\21-48-42.CCR	LIN11000XYZ.MAG
14-01-14\22-19-12.CCR	NULL.MAG

6.2 DC-Analysis at Moderate low Temperature

Linearity and offset measurements were performed at $T_{59} = -18.1^{\circ}$ C.

Thermal Analysis: refer to section 8.

Afterwards the heating system was activated and the sensor was heated up to $T_{59} = 40.1^{\circ}$ C.

6.3 DC-Analysis at Moderate High Temperature

Linearity and offset measurements were performed at $T_{59} = +41.5^{\circ}$ C.

Thermal Analysis: refer to section 8.

6.4 AC-Analysis at Moderate High Temperature

A frequency measurement was performed at 40°C.

Setup:

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor rotated to: Elevation= 45° Azimuth= 126°
- Field applied on Y_c .
- No attenuator

ΜΑςροτ	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
$I \bigcirc \Box \Gamma$ Technische Universität Braunschweig	Page:	20

6.4.1 Frequency Measurements

This section is dedicated to the frequency behavior of the instrument. The analysis of the performed AC measurements allows to calculate the actual sampling frequency f_s of the instrument and the frequency response (amplitude vs. frequency). The measurements have been performed with the sensor placed at CoC in a diagonal in space orientation. The AC-fields have been applied on the Y_c axis only. Using this setup it can be guaranteed that only one frequency is applied at a time and no beat effects occur.

Used Frequency Measurements:

CCD	Configuration	Remark
File	File	
14-01-14\10-32-56.CCR	FREQ10000.MAG	

Parameter File: FREQ_PARAMETER__14-01-14-10-32-56.FPF

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ΙΟΓΓ Technische Universität Braunschweig	Page:	21

Calibration Parameter:

	Component	f_s [Hz]	Standard deviation [Hz]
	X	10.0000	0.000280
	Y	10.0002	0.001927
Sampling Frequency:	Z	10.0000	0.000183
	Mean		
	Sampling Frequency	10.0001	0.000137

<u>3 dB Corner Frequency:</u>	Component	$f_{\rm 3dB}$ [Hz]
	X	5.10
	Y	4.86
		5.02

Applied Frequencies and Measured Amplitudes

Figure 13: Applied Frequencies for AC Analysis

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	22

Applied Frequency [Hz]	Bx [enT]	By [enT]	Bz [enT]
1000.000	56.40	46.53	12.87
794.000	49.94	53.28	38.90
631.000	0.24	0.28	0.21
501.000	123.54	142.58	105.37
398.000	145.21	165.63	125.28
316.000	0.34	0.01	0.74
251.000	11.08	6.47	10.19
199.000	180.88	207.36	158.85
158.000	35.93	21.12	33.54
126.000	58.84	39.06	55.08
100.000	156.03	164.30	134.31
79.400	28.17	20.19	26.09
63.100	130.06	78.57	123.03
50.100	4.72	13.17	4.90
39.800	14.07	10.64	13.69
31.600	134.65	81.83	132.13
25.100	366.28	234.86	354.38
19.900	15.85	22.38	15.23
15.800	601.80	459.66	563.54
12.600	572.71	481.01	533.21
10.000	3.07	9.98	2.95
7.900	760.07	716.58	712.85
6.310	1415.80	1359.88	1332.22
5.010	1276.39	1666.50	1179.30
3.980	2314.06	2246.80	2184.03
3.160	2568.45	2496.81	2425.86
2.510	2736.91	2662.12	2586.13
1.990	2846.54	2769.88	2690.21
1.580	2915.77	2837.89	2756.41
1.260	2960.84	2882.30	2798.71
1.000	2989.50	2910.35	2825.43
0.790	3010.13	2930.76	2845.63
0.631	3021.35	2941.76	2856.27
0.501	3027.98	2948.18	2862.29
0.398	3032.83	2953.37	2867.68
0.316	3035.81	2956.16	2869.97
0.251	3036.34	2956.43	2870.48
0.199	3038.82	2959.12	2872.76
0.158	3039.24	2959.82	2873.04
0.126	3040.36	2960.71	2874.31
0.100	3039.45	2959.87	2872.96

MACCOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ТССГ Technische Universität Braunschweig	Page:	23

Figure 14: Used packets of Measured data for the Frequency analysis

Figure 15: Calculated Frequency Response

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
Technische Universität Braunschweig	Page:	24

Figure 16: Coil System Temperature

Figure 17: Sensor Temperature

Afterwards the sensor was heated up to $T_{59} = +60^{\circ}$ C.

6.5 DC-Analysis at High Temperature

Linearity and offset measurements were performed at $T_{59} = +60^{\circ}$ C.

Thermal Analysis: refer to section 8.

6.6 AC-Analysis at High Temperature

A frequency measurement was performed at 60°C.

Thermal Analysis: refer to section 8.

Afterwards the sensor was heated up to $T_{59} = +80^{\circ}$ C.

6.7 DC-Analysis at Very High Temperature in Turned Configuration

The sensor was rotated to POSITION 4, to be able to see, whether the slightly worse performance of the z-component is related to the DUT or to the MCF. Analysis of the conducted linearity measurement showed, that the performance of the z-component stays constant. The effect rotates with the sensor; this means that the MCF works properly and the DUT has different properties on x,y and the z-axis (higher residuals on the model fits for the z-axis.)

This linearity measurement was performed at 80°C.

6.7.1 Calibration on 3 Linear Axes

Used Files:

 CCD
 Configuration
 Remark

 File
 File

 14-01-14\14-42-36.CCR
 LIN11000XYZ.MAG

MACOT	Document:	MAS-MAG-TR-0008
	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	26

Parameter File: PARAMETER_LIN__14-01-14_14-42-36.CPF

MASCOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICLD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLF Technische Universität Braunschweig	Page:	27

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +0.000000 & +0.000000 & -1.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +1.000000 & +0.000000 & +0.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.010856 & -0.002401 & +0.999938 \\ -0.002452 & +0.999994 & +0.002428 \\ -0.999938 & -0.002478 & +0.010850 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +89^\circ 22'41''$
Angle (Y_c, Y_m) : $\mu_y = +0^\circ 11'52''$
Angle (Z_c, Z_m) : $\nu_z = +89^\circ 22'42''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: SOLARTRON Fields applied for 24.0 s Mean Sensor Temperature: 80.6°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMICY = DYNAMICZ = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (31.654 \ , 12.778 \ , 7.066) \ \mathrm{nT}$

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 28

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

[Values in eng nT]	s_x	$ s_y$	s_z
Minimum	0.011	0.015	0.015
Mean	0.051	0.043	0.060
Maximum	0.126	0.112	0.363
	•		

Calibration Parameter:

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{\rm x,y} &= +89^{\circ} \ 40'50'' \\ \xi_{\rm x,z} &= +89^{\circ} \ 42'30'' \\ \xi_{\rm y,z} &= +90^{\circ} \ 6'45'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	Z
Standard Deviation	0.684	0.215	2.259
Maximum Error	0.981	0.408	3.520
Minimum Error	-1.412	-0.453	-4.981

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	29

Figure 18: Applied Fields

Figure 19: Measured Data

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 30

Figure 20: Model Quality - Differences of applied field and modelled measurement data

MACCOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
Institut für Geophysik u. ext	raterr. Physik Date:	1 January 16, 2014
IGEP Technische Universität Br	aunschweig Page:	31

Figure 23: RESIDUALS vs FLD Z

MASCOT	Document: MA Issue:	AS-MAG-TR-0008 1
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	January 16, 2014 32

Figure 24: Coil System Temperature

Figure 25: Sensor Temperature

Thermal Analysis: refer to section 8.

6.8 AC-Analysis at Very High Temperature

A frequency measurement was performed at 80°C.

Thermal Analysis: refer to section 8.

Afterwards the heating system was switched off for smooth cooling down to room temperature.

6.9 DC-Analysis at Very High Temperature

Linearity and offset measurements were performed at $T_{59} = +80^{\circ}$ C.

Thermal Analysis: refer to section 8.

Linearity measurements and zerofield measurements in fixed compensated earthfield conditions were conducted during the night.
7 Measurements on January 15, 2014

07:20 inspection of the system. It showed up that the EGSE has crashed again at about 17:10 last evening. Besides that everything was ok. The linearity measurement was stopped. The system was at a temperature of $T_{59} = +40^{\circ}$.

7.1 Data

File File	-
14-01-15\07-52-01.CCR NUL 14-01-15\08-34-41.CCR LIN 14-01-15\08-36-01.CCR LIN 14-01-15\08-38-30.CCR LIN 14-01-15\09-09-01.CCR LIN 14-01-15\09-09-01.CCR LIN 14-01-15\09-42-36.CCR FRE 14-01-15\10-26-15.CCR LIN 14-01-15\10-26-75.CCR LIN	L.MAG 11000XYZ.MAG 11000XYZ.MAG 11000XYZ.MAG 11000XYZ.MAG 210000.MAG 11000XYZ.MAG SET_200.MAG

Some test without the MRode CDRS were conducted by David. At 08:21:13 and at 8:25:05 some test were conducted with AC fields of 0.1 Hz and amplitudes of 20000 nT_{pp} , 40000 nT_{pp} , 30000 nT_{pp} , and 25000 nT_{pp} .

Afterwards the cooling system was engaged in order to cool the sensor down to $+20^{\circ}$ C.

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLI Technische Universität Braunschweig	Page:	35

7.2 DC-Analysis at Room Temperature with Different Phase Values

A Linearity measurement was performed at $T_{59} = +21^{\circ}$ C. For this measurement the following phase values were used:

• DUT parameters: Phase X: 104 Phase Y: 107 Phase Z: 109

7.2.1 Calibration on 3 Linear Axes

Used Files:

CCD	Configuration	Remark	
File	File		
14-01-15\09-09-01.CCR	LIN11000XYZ.MAG		

Parameter File: PARAMETER_LIN__14-01-15_09-09-01.CPF

MACOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	36

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.999688 & +0.010041 & +0.022871 \\ -0.009948 & +0.999942 & -0.004166 \\ -0.022912 & +0.003937 & +0.999730 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +1^{\circ} 25'53''$
Angle (Y_c, Y_m) : $\mu_y = +0^{\circ} 37'5''$
Angle (Z_c, Z_m) : $\nu_z = +1^{\circ} 19'56''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: SOLARTRON Fields applied for 23.0 s Mean Sensor Temperature: 20.1°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMICY = DYNAMICZ = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (20.808 \ , 12.374 \ , -5.565) \ \mathrm{nT}$

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 37

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

016 0.008	0.013
058 0.041	0.052
139 0.109	0.156
	$\begin{array}{c ccccc} 016 & 0.008 \\ 058 & 0.041 \\ 139 & 0.109 \end{array}$

Calibration Parameter:

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{x,y} &= +89^{\circ} \ 41'16'' \\ \xi_{x,z} &= +89^{\circ} \ 43'3'' \\ \xi_{y,z} &= +90^{\circ} \ 7'30'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	Z
Standard Deviation	0.360	0.181	1.571
Maximum Error	1.725	0.680	3.125
Minimum Error	-0.883	-0.286	-3.441

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	38

Figure 26: Applied Fields

Figure 27: Measured Data

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 39

Figure 28: Model Quality - Differences of applied field and modelled measurement data

	TOT	Document:	MAS-MAG-TR-0008
MASC		Issue:	1
		Revision:	1
ICFD	Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEI	Technische Universität Braunschweig	Page:	40

Figure 31: RESIDUALS vs FLD Z

MASCOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICLD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLI Technische Universität Braunschweig	Page:	41

Figure 32: Coil System Temperature

Figure 33: Sensor Temperature

After the measurement the phase values were set back to the default values.

Thermal Analysis: refer to section 8.

7.3 AC-Analysis at Room Temperature

A frequency measurement was performed at 20° C.

Setup:

- Sensor mounted in thermal box. CoC. Box vertical.
- Sensor rotated to: Elevation= 45° Azimuth= 126°
- Field applied on Y_c .
- No attenuator

7.3.1 Frequency Measurements

This section is dedicated to the frequency behavior of the instrument. The analysis of the performed AC measurements allows to calculate the actual sampling frequency f_s of the instrument and the frequency response (amplitude vs. frequency). The measurements have been performed with the sensor placed at CoC in a diagonal in space orientation. The AC-fields have been applied on the Y_c axis only. Using this setup it can be guaranteed that only one frequency is applied at a time and no beat effects occur.

Used Frequency Measurements:

CCD File	Configuration File	Remark
14-01-15\09-42-36.CCR	FREQ10000.MAG	

Parameter File: FREQ_PARAMETER__14-01-15-09-42-36.FPF

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ТССГ Technische Universität Braunschweig	Page:	43

Calibration Parameter:

	Component	f_s [Hz]	Standard deviation [Hz]
	X	10.0000	0.000056
	Y	10.0002	0.000539
Sampling Frequency:	Z	10.0000	0.000090
	Mean		
	Sampling Frequency	10.0001	0.000155

	Component	$f_{\rm 3dB}$ [Hz]
<u>3 dB Corner Frequency:</u>	X	5.59
	Y	5.58
		5.59

Applied Frequencies and Measured Amplitudes

Figure 34: Applied Frequencies for AC Analysis

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEF Technische Universität Braunschweig	Page:	44

Applied Frequency [Hz]	Bx [enT]	By [enT]	Bz [enT]
1000.000	43.99	29.05	35.80
794.000	47.63	51.38	36.10
631.000	0.27	0.14	0.08
501.000	122.19	139.67	97.07
398.000	144.06	163.12	119.95
316.000	0.92	0.78	0.79
251.000	10.89	6.27	10.02
199.000	181.14	207.80	156.40
158.000	36.30	21.42	34.66
126.000	58.96	38.71	55.52
100.000	122.40	76.97	109.45
79.400	28.38	19.74	26.35
63.100	131.33	78.64	125.60
50.100	5.60	2.09	5.43
39.800	14.06	8.75	13.81
31.600	135.67	80.93	134.76
25.100	368.90	235.62	359.83
19.900	15.36	17.16	14.74
15.800	607.21	461.26	568.14
12.600	577.32	482.22	535.49
10.000	1.52	1.21	1.43
7.900	765.70	718.00	712.56
6.310	1425.32	1361.01	1329.94
5.010	1954.50	1875.67	1826.90
3.980	2327.30	2244.30	2176.44
3.160	2582.66	2493.82	2416.55
2.510	2752.10	2658.94	2576.01
1.990	2862.45	2766.77	2679.43
1.580	2932.75	2835.21	2745.96
1.260	2977.35	2879.44	2787.31
1.000	3006.92	2907.99	2814.55
0.790	3025.55	2925.94	2832.63
0.631	3036.86	2937.17	2843.34
0.501	3044.31	2944.35	2850.00
0.398	3049.02	2949.10	2855.01
0.316	3051.69	2951.47	2856.99
0.251	3053.19	2952.50	2858.37
0.199	3055.41	2955.16	2860.25
0.158	3056.36	2956.29	2861.21
0.126	3056.74	2956.78	2861.55
0.100	3056.75	2955.50	2861.19

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICTD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLΓ Technische Universität Braunschweig	Page:	45

Figure 35: Used packets of Measured data for the Frequency analysis

Figure 36: Calculated Frequency Response

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	January 16, 2014 46

Figure 37: Coil System Temperature

Figure 38: Sensor Temperature

7.4 DC-Analysis at Environmental Temperature

A standard linearity and offset measurement was performed at $17^{\rm o}{\rm C}.$

7.4.1 Calibration on 3 Linear Axes

Used Files:

CCD File	Configuration File	Remark
14-01-15\10-26-15.CCR	LIN11000XYZ.MAG	

Parameter File: PARAMETER_LIN__14-01-15_10-26-15.CPF

MASCOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	48

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Sensor Rotation:

$$\underline{\rho} = \left(\begin{array}{ccc} +0.999552 & +0.008937 & +0.028582 \\ -0.008807 & +0.999950 & -0.004653 \\ -0.028622 & +0.004399 & +0.999581 \end{array}\right)$$

Rotation Angles:

Angle
$$(X_c, X_m)$$
: $\lambda_x = +1^{\circ} 42'58''$
Angle (Y_c, Y_m) : $\mu_y = +0^{\circ} 34'15''$
Angle (Z_c, Z_m) : $\nu_z = +1^{\circ} 39'34''$

Determinant of Rotation Matrix: 1.00000 Nominal Field Source: SOLARTRON Fields applied for 23.0 s Mean Sensor Temperature: 18.0°C Automatic Coil Correction: used

Earthfield Compensation: X = DYNAMICY = DYNAMICZ = DYNAMIC

Offset Treatment:

A polynomial offset trend of order 2 has been fitted and subtracted from the raw data before creating the sensor model.

Mean Coil System Residual + Sensor Offset: $\underline{B}^{or} = (20.464, 11.951, -4.210)$ nT

MASCO'I'	1
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	January 16, 2014

Raw Data Quality:

Standard Deviation of used Raw Data Blocks:

[Values in eng nT]	s_x	$ s_y $	s_z
Minimum	0.004	0.003	0.002
Mean	0.048	0.035	0.040
Maximum	0.128	0.108	0.128

Calibration Parameter:

Sensor Misalignment Angles:

$$\begin{aligned} \xi_{\rm x,y} &= +89^{\circ} \ 41'9'' \\ \xi_{\rm x,z} &= +89^{\circ} \ 42'27'' \\ \xi_{\rm y,z} &= +90^{\circ} \ 7'24'' \end{aligned}$$

Model Quality:

Standard Deviation, Maximum and Minimum Error of Calculated Model:

[Values in nT]	X	Y	
Standard Deviation	0.416	0.144	0.834
Maximum Error	0.714	0.449	3.379
Minimum Error	-0.902	-0.262	-0.873

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLI Technische Universität Braunschweig	Page:	50

Figure 39: Applied Fields

Figure 40: Measured Data

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 51

Figure 41: Model Quality - Differences of applied field and modelled measurement data

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEF Technische Universität Braunschweig	Page:	52

Figure 42: RESIDUALS vs FLD X

Figure 44: RESIDUALS vs FLD Z

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 53

Figure 45: Coil System Temperature

Figure 46: Sensor Temperature

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ТСГ Technische Universität Braunschweig	Page:	54

7.4.2 OFFSET Calculation

In this section the instrument offsets and the residual field of the Coil System will be evaluated. Measurements at two orientations for each component act as input for the offset calculation. From the "normal" (0-degrees) and "turned" (180-degrees) orientations the offsets and residual fields can be derived:

$$B_{\text{off}} = \frac{B_{\text{normal}} + B_{\text{turned}}}{2}$$
$$B_{\text{res}} = \frac{B_{\text{normal}} - B_{\text{turned}}}{2}$$

Used Offset Measurements:

CCD	Configuration	Remark	
File	File		
14-01-15\11-08-47.CCR	OFFSET_200.MAG		

Parameter File: OFF_PARAMETER__14-01-15-11-08-47.OPF

	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
ΙΟΓΓ Technische Universität Braunschweig	Page:	55

Calibration Parameter:

	Component	Offset [enT]	Standard deviation [enT]
	X	18.63	0.097
Sensor Offsets:	Y	13.95	0.120
		2.50	0.100

	Component	$B_{\rm res}$ [enT]
Pasidual Field of the Cail System.	X	2.72
Residual Field of the Coll System:	Y	-2.44
		-1.34

Remark: Residual field is given in actual DUT coordinates, not in coil-coordinates!

The calibration was finished at 11:45.

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	56

8 Combined Measurements from January 10 – 15, 2014

8.1 Thermal-Analysis

8.1.1 Temperature Calibration on Linear Axes

Used Temperature Measurements:

Calibration Parameter File

Remark

PARAMETER_TEMPLIN__14-01-10_17-07-01.CPF PARAMETER_TEMPLIN__14-01-10_17-37-32.CPF PARAMETER_TEMPLIN__14-01-10_21-41-40.CPF PARAMETER_TEMPLIN__14-01-13_08-12-34.CPF PARAMETER_TEMPLIN__14-01-13_08-52-32.CPF PARAMETER_TEMPLIN__14-01-13_09-23-03.CPF PARAMETER_TEMPLIN__14-01-13_09-53-35.CPF PARAMETER_TEMPLIN__14-01-13_13-05-30.CPF PARAMETER_TEMPLIN__14-01-13_13-36-00.CPF PARAMETER_TEMPLIN__14-01-13_15-41-19.CPF PARAMETER_TEMPLIN__14-01-13_20-46-24.CPF PARAMETER_TEMPLIN__14-01-14_00-19-59.CPF PARAMETER_TEMPLIN__14-01-14_06-56-35.CPF PARAMETER_TEMPLIN__14-01-14_12-19-09.CPF PARAMETER_TEMPLIN__14-01-14_12-49-39.CPF PARAMETER_TEMPLIN__14-01-14_14-42-36.CPF PARAMETER_TEMPLIN__14-01-14_15-13-07.CPF PARAMETER_TEMPLIN__14-01-15_09-09-01.CPF PARAMETER_TEMPLIN__14-01-15_10-26-15.CPF

Thermal Parameter File: THERMAL_PARAMETER__14-01-10-17-07-01.TPF

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEP Technische Universität Braunschweig	Page:	57

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{DUT} = \underline{\underline{R}}_{nom} \underline{\underline{B}}_{C}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Calculated Initial Sensor Rotation:

$$\underline{\underline{R}} = \left(\begin{array}{ccc} +0.999545 & +0.008266 & +0.029000 \\ -0.008118 & +0.999953 & -0.005231 \\ -0.029042 & +0.004994 & +0.999566 \end{array}\right)$$

Initial Rotation Angles:

Rotation @ X:
$$\lambda_x = +1^{\circ} 43'41''$$
Rotation @ Y: $\mu_y = +0^{\circ} 33'12''$ Rotation @ Z: $\nu_z = +1^{\circ} 41'19''$

Determinant of Rotation Matrix: 1.0000

Nominal Field Source: SOLARTRON

Automatic Coil correction: used

Used Sensor-Temperature-Channel: T_{59}

MACOT	Document:	MAS-MAG-TR-0008
MASUUI	Issue:	1
	Revision:	1
ICLD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLF Technische Universität Braunschweig	Page:	58

Temperature Profile

Figure 47: Temperature Profile

MACOT	Document:	MAS-MAG-TR-0008
MASOOT	Issue:	1
	Revision:	1
ICLD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEP Technische Universität Braunschweig	Page:	59

Calibration Parameter:

Sensitivity σ_i vs. Temperature:

$$\sigma_i(T) = \sum_{k=0}^n \sigma_{k,i} T^k \qquad [1, \ ^\circ C], \ i = \{x, y, z\}$$

	$\sigma_{0,i}$	$\sigma_{1,i}$	$\sigma_{2,i}$	$\sigma_{3,i}$	$\sigma_{4,i}$	$\sigma_{5,i}$
σ_x	9.98815E-1	-1.78666E-5				
σ_y	9.99394E-1	-1.34155E-5				
σ_z	9.99098E-1	-1.81212E-5				

Figure 48: Temperature dependence of Sensitivities

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IULГ Technische Universität Braunschweig	Page:	60

Misalignment Angles ξ_{ij} vs. Temperature:

$$\xi_{ij}(T) = \sum_{k=0}^{n} \xi_{k,ij} T^k \qquad [\text{deg, }^{\circ}\text{C}], \text{ ij} = \{\text{xy,xz,yz}\}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} & \xi_{0,ij} & \xi_{1,ij} & \xi_{2,ij} & \xi_{3,ij} & \xi_{4,ij} & \xi_{5,ij} \\ \hline \xi_{xy} & 8.9684E+1 & -1.0371E-5 \\ \xi_{xz} & 8.9717E+1 & 6.9566E-5 \\ \xi_{yz} & 9.0113E+1 & 2.1981E-5 \\ \end{array}$$

Figure 49: Temperature dependence of Misalignment Angles

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
Ι΄΄Γ Technische Universität Braunschweig	Page:	61

Offset & Residual MCF Field $\underline{B}^{or} = \underline{B}^{off} + \underline{B}^{res}$ vs. Temperature:

$$\underline{B}^{or}(T) = \sum_{k=0}^{n} \underline{B}_{k}^{or} T^{k} \qquad [\text{enT, }^{\circ}\text{C}]$$

	\underline{B}_{0}^{or}	\underline{B}_1^{or}	\underline{B}_2^{or}	\underline{B}_3^{or}	\underline{B}_4^{or}	\underline{B}_5^{or}
B_x^{or}	2.220E+1	3.617E-2				
B_y^{or}	1.240E + 1	-3.514E-4				
B_z^{or}	-4.415E+0	5.270E-2				

MACOT	Document:	MAS-MAG-TR-0008
MASUUI	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IUСГ Technische Universität Braunschweig	Page:	62

Model Quality:

Minimum and maximum errors of the calculated Model vs. Temperature:

Figure 50: Residuals of Thermal Model

MACOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICLD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLI Technische Universität Braunschweig	Page:	63

Sensor Rotation during Test:

Figure 51: Rotation @ X-Axis

Figure 53: Rotation @ Z-Axis

MACOT	Document: MAS-MAG-TR-0008
MASCOT	Issue: 1
	Revision: 1
ICED Institut für Geophysik u. extraterr. F	Physik Date: January 16, 2014
TGLT Technische Universität Braunschw	eig Page: 64

Temperature Calibration of the Sensor Offset 8.1.2

Used Temperature Measurements:

Calibration Parameter File	Remark
OFF_PARAMETER14-01-10-16-25-52.OPF	
OFF_PARAMETER14-01-13-08-43-55.OPF	

OFF_PARAMETER__14-01-13-10-25-04.OPF OFF_PARAMETER__14-01-13-14-10-49.OPF OFF_PARAMETER__14-01-14-07-41-16.OPF OFF_PARAMETER__14-01-14-10-24-51.OPF OFF_PARAMETER__14-01-14-13-21-06.OPF OFF_PARAMETER__14-01-14-15-44-27.OPF OFF_PARAMETER__14-01-15-11-08-47.OPF

Thermal Parameter File: THERMAL_OFF_PARAMETER__14-01-10-16-25-52.TOF

MACOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	65

Facility Parameter:

Nominal Sensor Setup $\underline{B}_{\text{DUT}} = \underline{\underline{R}}_{\text{nom}} \underline{\underline{B}}_{\text{C}}$

$$\underline{\underline{R}}_{nom} = \begin{pmatrix} +1.000000 & +0.000000 & +0.000000 \\ +0.000000 & +1.000000 & +0.000000 \\ +0.000000 & +0.000000 & +1.000000 \end{pmatrix}$$

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 54: Temperature Profile

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
Ι΄΄Γ Technische Universität Braunschweig	Page:	66

Calibration Parameter:

Sensor Offset $\underline{B}_{\rm off}$ vs. Temperature:

$$B_{\text{off},i}(T) = \sum_{k=0}^{n} B_{\text{off},k,i} T^{k} \qquad [\text{enT}, \ ^{\circ}\text{C}], \ i = \{x,y,z\}$$

	$B_{ m off,0,i}$	$B_{ m off,1,i}$	$B_{\rm off,2,i}$	$B_{\rm off,3,i}$	$B_{\rm off,4,i}$	$B_{\rm off,5,i}$
$B_{\rm off,x}$	$1.76453E{+}1$	-1.25373E-2				
$B_{\rm off,y}$	$1.46506E{+}1$	5.57159E-3				
$B_{\rm off,z}$	4.06089E + 0	-6.07191E-3				

Figure 55: Temperature dependence of Sensor Offsets

MASCOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEP Technische Universität Braunschweig	Page:	67

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the offset measurements.

Figure 56: Coil System Temperature during Thermal Measurements

MACOT	Document:	MAS-MAG-TR-0008
MASUUI	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGEP Technische Universität Braunschweig	Page:	68

Coil System Residual Field:

The following graph shows the three components of the Coil System Residual field during the whole measurement. Axes designators are related to the actual DUT coordinate system and NOT to Coil System coordinates.

Figure 57: Coil System Residual Fields during Thermal Measurements

Remark:

The axes designation for this graph is given as follows (rf. to setup defined in chapter 1):

X_m	=	X_c
Y_m	=	Y_c
Z_m	=	$-X_c$

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 69

8.1.3 Temperature Calibration of the AC Transfer Function

Used Temperature Measurements:

Calibration Parameter File	Remark
----------------------------	--------

FREQ_PARAMETER__14-01-10-15-43-38.FPF FREQ_PARAMETER__14-01-14-10-32-56.FPF FREQ_PARAMETER__14-01-14-13-28-50.FPF FREQ_PARAMETER__14-01-14-15-57-46.FPF FREQ_PARAMETER__14-01-15-09-42-36.FPF

Thermal Parameter File: THERMAL_AC_PARAMETER__14-01-10-15-43-38.TAF
MASCOT	Document:	MAS-MAG-TR-0008
MADUUI	Issue:	1
	Revision:	1
ICTD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLГ Technische Universität Braunschweig	Page:	70

Facility Parameter:

Nominal Sensor Setup: Diagonal in Space inside Thermal Box.

Sensor Temperature Channel: T_{59}

Coil System Temperature Channel: T_{29}

Temperature Profile

Figure 58: Temperature Profile

MASCOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLI Technische Universität Braunschweig	Page:	71

Coil System Temperature

The following graph shows the mean Coil System temperature during the complete thermal cycle for the AC measurements.

Figure 59: Coil System Temperature during Thermal AC Measurements

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
IODD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLP Technische Universität Braunschweig	Page:	72

Calibration Parameter:

-3dB Corner Frequency f_{3dB} vs. Temperature:

$$f_{3dB,i}(T) = \sum_{k=0}^{n} f_{3dB,k,i}T^{k}$$
 [Hz, °C], i={x,y,z}

	$f_{ m 3dB,0,i}$	$f_{ m 3dB,1,i}$	$f_{\rm 3dB,2,i}$	$f_{\rm 3dB,3,i}$	$f_{\rm 3dB,4,i}$	$f_{\rm 3dB,5,i}$
$f_{\rm 3dB,x}$	5.47776E + 0	-6.74126E-3				
$f_{\rm 3dB,y}$	5.36743E + 0	-4.05430E-3				
$f_{\rm 3dB,z}$	$5.44671E{+}0$	-5.38190E-3				

Figure 60: Temperature dependence of 3dB Corner Frequency

MACOT	Document:	MAS-MAG-TR-0008
MASUUT	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLP Technische Universität Braunschweig	Page:	73

Instrument Sampling Frequency:

The following graph shows the calculated sampling frequencies vs. the actual sensor temperature.

Figure 61: Instrument Sampling Frequency versus Sensor Temperature

Mean Samplerate: 9.999182 Hz. Mean Standard Deviation of Samplerate: 0.001698 Hz.

MASCOT	Document: Issue:	MAS-MAG-TR-0008
IGEP Institut für Geophysik u. extraterr. Physik Technische Universität Braunschweig	Revision: Date: Page:	1 January 16, 2014 74

8.2 Complete Temperature Profile

The following plot shows the complete thermal cycle of the sensor with all cooling and heating phases. The curves show the desired nominal temperatures in green and the actual measured temperatures in red.

Figure 62: Complete thermal cycle

MACOT	Document:	MAS-MAG-TR-0008
MADUUI	Issue:	1
	Revision:	1
ICDD Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLP Technische Universität Braunschweig	Page:	75

9 Mathematical Description of the Calibration

9.1 Basic Principle

The Magnetsrode Coil Facility (MCF) generates an artificial magnetic field $\underline{B}^{\text{FLD}}$ that can be considered as a calibrated, orthogonal magnetic reference field¹ defined in coilsystem coordinates. For the calibration analysis this ideal coilsystem field is rotated to ideal orthogonal sensor coordinates using a nominal Rotation matrix $\underline{R}_{\text{nom}}$ at the first step. Nominal means that only rotations of $\pm 90^{\circ}$ or $\pm 180^{\circ}$ at any axis are considered here to get a coarse alignment of the applied field with the sensor-axes.

$$\underline{B}^{\mathrm{C}} = \underline{\underline{R}}_{\mathrm{nom}} \underline{B}^{\mathrm{FLD}}$$

For a standard calibration the matrix $\underline{\underline{R}}_{nom}$ is just a $\underline{\underline{I}}$ - matrix - sensor coordinates and coilsystem coordinates have roughly the same direction. If the sensor coordinates are left-handed or the sensor is turned by about $\pm 90^{\circ}$ or $\pm 180^{\circ}$ at any axis $\underline{\underline{R}}_{nom}$ will contain ± 1 -elements or 0-elements at any place. The rotated coil system field $\underline{\underline{B}}^{c}$ is the used reference field for the following analysis.

The magnetometer under test at the center of the coil system (CoC) generates magnetic raw data $\underline{B}^{\rm r}$. These data include an eventually existing residual field of the coil system $\underline{B}^{\rm res}$ and the magnetometer offset $\underline{B}^{\rm off}$. Both entities are combined in the offset & residual field $\underline{B}^{\rm or}$:

$$\underline{B}^{\text{or}} = \underline{B}^{\text{off}} + \underline{B}^{\text{res}}$$

Therefore, the second step of the calibration is the generation of offset and residual field corrected measured field data \underline{B}^{m} :

$$\underline{B}^{\mathrm{m}} = \underline{B}^{\mathrm{r}} - \underline{B}^{\mathrm{or}}$$

The actual offset and residual field is automatically taken into account during the calibration analysis. Either a constant field or - if needed - a linear trend of $\underline{B}^{\text{or}}$ is subtracted from the raw data.

The relation between the calibration field and the magnetometer data is then defined by

$$\underline{B}^{c} = \underline{\Phi} \underline{B}^{m}$$

where $\underline{\Phi}$ is the complete calibration transfer matrix, defined by

$$\underline{\underline{\phi}} = \underline{\underline{R}}_{\text{nom}} \ \underline{\underline{\rho}} \underline{\underline{\omega}} \underline{\underline{\sigma}}.$$

 $^{^{1}}$ During the calibration the temperature dependent sensitivity of the coil system is calculated every 3 minutes and taken into account as well as the static misalignment of the coil system to produce orthogonal, known fields.

MASCOT		Document:	MAS-MAG-TR-0008
MAD		Issue:	1
		Revision:	1
ICED	Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGLL	Technische Universität Braunschweig	Page:	76

 $\underline{\sigma}(T)$ represents the temperature dependent sensitivity.

 $\underline{\underline{\omega}}(T)$ describes the temperature dependent internal sensor misalignment (orthogonalisation matrix).

 $\underline{\rho}(T)$ describes the real rotation of the sensor against the coil axes.²

Thus the calibration algorithms have to solve the following problem:

$$\underline{\underline{B}}^{c} = \underline{\underline{\Phi}} \underline{\underline{B}}^{m}$$

$$= \underline{\underline{R}}_{nom} \underline{\underline{\rho}} \underline{\underline{\omega}} \underline{\underline{\sigma}} \underline{\underline{B}}^{m}$$

$$(1)$$

The separation into these submatrices and evaluation of their elements is done in subsequent steps:

• Calculation of the Sensitivity matrix $\underline{\sigma}$ The sensitivity matrix shall contain the on-axis sensitivity coefficients of the sensors. Therefore, $\underline{\sigma}$ has to be a diagonal matrix of the following kind:

$$\underline{\underline{\sigma}} = \left(\begin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{array} \right)$$

The separation of matrix $\underline{\sigma}$ from the transfer function $\underline{\phi}$ yields

For the computation of the sensitivity coefficients σ_i the transformation of the basevectors has to be considered. Equation (1) transform the components of the fields, whereas

$$\underline{e}^{\mathbf{c}} = \left(\underline{\underline{\phi}}^{\mathbf{T}}\right)^{-1} \ \underline{e}^{\mathbf{m}} := \underline{\Psi} \ \underline{e}^{\mathbf{m}}$$

has to be used for the contragredient base-vector transformation of the skew sensorsystem $\Sigma^{\rm m}$ into the orthonormal coilsystem $\Sigma^{\rm c}$. The length of the column vectors of $\underline{\psi}$ define the sensitivity coefficients σ_i :

$$\sigma_1 = \frac{1}{\sqrt{\psi_{11}^2 + \psi_{21}^2 + \psi_{31}^2}}$$

 $^{^{2}}$ Also the rotation matrix is regarded as temperature dependent being able to consider any thermal setup inadequacies causing fractional rotations.

MASCOT

$$\sigma_2 = \frac{1}{\sqrt{\psi_{12}^2 + \psi_{22}^2 + \psi_{32}^2}}$$

$$\sigma_3 = \frac{1}{\sqrt{\psi_{13}^2 + \psi_{23}^2 + \psi_{33}^2}}$$

• Calculation of the Misalignment matrix $\underline{\omega}$

IGEP Institut für Geophysik u. extraterr. Physik

Technische Universität Braunschweig

After the separation of $\underline{\underline{\sigma}}$ the reduced transfer function $\overset{\wedge}{\underline{\phi}}$ contains only the misalignment and the real sensor rotation. The misalignment angles $\xi_{xy}, \xi_{xz}, \xi_{yz}$, hence the angles between the base vectors of the affine sensor system Σ^m , can be evaluated from the scalar products of all these base vectors. The base unit vectors are defined by the inverse transposed matrix of the reduced transfer function:

$$\underline{e}_{\mathbf{X}}^{\mathbf{m}} := \begin{pmatrix} \wedge T \\ \underline{\phi} \\ \underline{\phi} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$\underline{e}_{\mathbf{Y}}^{\mathbf{m}} := \begin{pmatrix} \wedge T \\ \underline{\phi} \\ \underline{e} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$\underline{e}_{\mathbf{Z}}^{\mathbf{m}} := \begin{pmatrix} \wedge T \\ \underline{\phi} \\ \underline{e} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

The misalignment angles can be derived from the scalar products:

$$\begin{aligned} \xi_{xy} &= \arccos\left(\underline{e}_x^m \cdot \underline{e}_y^m\right) \\ \xi_{xz} &= \arccos\left(\underline{e}_x^m \cdot \underline{e}_z^m\right) \\ \xi_{yz} &= \arccos\left(\underline{e}_y^m \cdot \underline{e}_z^m\right) \end{aligned}$$

Let's assume that the x-axis of the reference system $\underline{e}_{\mathbf{X}}^{\mathbf{C}}$ is identical to the $\underline{e}_{\mathbf{X}}^{\mathbf{M}}$ -axis of the sensor system. The angle between $\underline{e}_{\mathbf{y}}^{\mathbf{C}}$ and $\underline{e}_{\mathbf{y}}^{\mathbf{m}}$ is β (rotation angle around the $\underline{e}_{\mathbf{z}}^{\mathbf{C}}$ axis). And the sensor $\underline{e}_{\mathbf{z}}^{\mathbf{m}}$ axis can be constructed by a rotation of η in the $\underline{e}_{\mathbf{X}}^{\mathbf{C}}, \underline{e}_{\mathbf{V}}^{\mathbf{C}}$ -plane and a second rotation of γ out of this plane. Then this misalignment of the base vectors is given by

$$\underline{\underline{O}} = \begin{pmatrix} 1 & \sin\beta & \sin\gamma \\ 0 & \cos\beta & \cos\gamma\sin\eta \\ 0 & 0 & \cos\gamma\cos\eta \end{pmatrix}$$
(2)

By comparison of the angles β , η , γ with misalignment angles ξ_{xy} , ξ_{xz} , ξ_{yz} , the misalignment matrix (2) can be written in the following shape:

MASCOT Issue: Revision: IGEP Institut für Geophysik u. extraterr. Physik Date: Technische Universität Braunschweig

$$\underline{\underline{O}} = \begin{pmatrix} 1 & \cos \xi_{xy} & \cos \xi_{xz} \\ 0 & \sin \xi_{xy} & \frac{\cos \xi_{yz} - \cos \xi_{xy} \cos \xi_{xz}}{\sin \xi_{xy}} \\ 0 & 0 & \sqrt{\sin^2 \xi_{xz} - \frac{(\cos \xi_{yz} - \cos \xi_{xy} \cos \xi_{xz})^2}{\sin^2 \xi_{xy}}} \end{pmatrix}$$

 \underline{O} transforms the base vectors. To achieve the transformation between the field components the transposed, inverse matrix of \underline{O} has to be calculated as the final misalignment matrix: 1

$$\underline{\underline{\omega}} = \left(\underline{\underline{O}}^{\mathrm{T}}\right)^{-}$$

• Calculation of the Rotation matrix $\underline{\rho}$ With the knowledge of $\underline{\underline{\omega}}$ and the nominal Setup matrix $\underline{\underline{R}}_{nom}$ the rotation matrix $\underline{\underline{\rho}}$ can be evaluated:

$$\underline{\underline{\rho}} = (\underline{\underline{R}}_{\text{nom}})^{-1} \stackrel{\wedge}{\underline{\underline{\rho}}} (\underline{\underline{\omega}})^{-1}$$

From this rotation matrix the actual rotation angles of the sensor wrt. the coil system can be calculated using again the scalar product:

$$\begin{aligned} \lambda &:= \arccos\left(\left[\underbrace{\rho}_{\Xi} \begin{bmatrix} 1\\0\\0 \end{bmatrix}\right] \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix}\right) \\ \mu &:= \arccos\left(\left[\underbrace{\rho}_{\Xi} \begin{bmatrix} 0\\1\\0 \end{bmatrix}\right] \cdot \begin{bmatrix} 0\\1\\0 \end{bmatrix}\right) \\ \nu &:= \arccos\left(\left[\underbrace{\rho}_{\Xi} \begin{bmatrix} 0\\0\\1 \end{bmatrix}\right] \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}\right) \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}\right) \end{aligned}\right)$$

The rotation matrix $\underline{\rho}$ and the rotation angles λ, μ, ν are of interest just for the calibration to determine the right magnetometer parameters.

The transfer function for the normal use of the magnetometer is just given by

$$\underline{\phi} = \underline{\omega} \underline{\sigma}$$

MACOT	Document:	MAS-MAG-TR-0008
MASCOT	Issue:	1
	Revision:	1
ICED Institut für Geophysik u. extraterr. Physik	Date:	January 16, 2014
IGL <i>I</i> Technische Universität Braunschweig	Page:	79

10 Nomenclature

Abbreviations in theoretical sections:

Item	Meaning
\underline{B}^{c}	Magnetic calibration field generated by coil system
\underline{B}^{off}	Offset of the magnetometer [nT]
\underline{B}_{k}^{off}	Polynomial Fit coefficients for the sensor offset vs. temperature
$\underline{B}^{\widetilde{m}}$	Measured magnetic field raw data, offset & residual field corrected [nT]
\underline{B}^{or}	$= \underline{B}^{off} + \underline{B}^{res}$, Offset + Residual field at CoC [enT]
\underline{B}^r	Magnetic field raw data
$B^r_{0^\circ}$	Magnetic raw data, measured in normal position $(0^{\circ})[enT]$
$B^r_{180^\circ}$	Magnetic raw data, measured in turned position (180°)[enT]
\underline{B}^{res}	Residual field of the coil system
$e^{\circ}C$	Engineering degrees centigrade units
enT	Engineering NanoTesla units
c_0, c_1, c_2, c_3	Fit coefficients of the sensor thermistor
i	$component x \mid y \mid z$
CoC	Center of Coil system
DUT	Device under Test
$\stackrel{\phi}{=}$	$=\underline{\underline{R}}_{nom}\underline{\underline{\rho}}\underline{\underline{\omega}}\underline{\underline{\sigma}}$, Calibration Transfer Matrix
$\overline{\phi}$	$=\underline{\underline{\omega}}\underline{\underline{\sigma}}$, Transfer Matrix
$\overline{\wedge}$	$-\phi \sigma^{-1}$ Reduced Transfer Matrix
$\frac{\varphi}{=}$	$-\frac{\phi}{\Xi}$, reduced frame water
$\frac{\psi}{\overline{a}}$	$= (\phi^2)^{-1}$, Auximary transfer matrix
$\underline{\underline{O}}$	Base vector Orthogonalisation matrix (a^T)
$\underline{\omega}$	$= (\underline{O}^{T})^{-1}$, Field components orthogonalisation matrix
$\underline{\underline{R}}_{nom}$	Nominal Rotation matrix of sensor vs. coil system
$\underline{\underline{\rho}}$	= Actual rotation matrix
$\underline{\underline{\sigma}}$	= Sensitivity matrix
$\sigma_{k,i}$	Polynomial Fit coefficient for sensitivity vs. temperature.
	Coefficient of order k for the sensor component i
TeMeSys	MRode Temperature Measurement System
T_s^c	Temperature of sensor s, calibrated data [°C]
T_s^r	Temperature of sensor s, raw data [e°C]
S	Sensor IB OB
$U_{\rm T, \ IB}$	IB–Temperature data [V], measured
$U_{\rm T,OB}$	OB–Temperature data [V], measured
ξ_{ij}	Temperature dependent alignment angle (ij component)
$\xi^0_{k,ij}$	Polynomial Fit coefficient for misalignment angle vs. temperature.
-	Coefficient of order k for the angle ij
λ, μ, u	Rotation angles wrt. coil system reference coordinates.