A New Software Tool for Computing Earth's Atmospheric Transmission of Near- and Far-Infrared Radiation

Steven D. Lord

```
(NASA-TM-103957) A NEW SOFTWARE
N93-20066
TOOL FOR COMPUTING EARTH'S
ATMOSPHERIC TRANSMISSION OF NEAR-
AND FAR-INFRARED RADIATION (NASA)
Unclas
194 p

National Aeronautics and Space Administration

\title{
A New Software Tool for Computing Earth's Atmospheric Transmission of Near- and Far-Infrared Radiation
}

\author{
Steven D. Lord, Ames Research Center, Moffett Field, California
}

National Aeronautics and Space Administration

\section*{SUMMARY}

This report describes a new software tool, ATRAN, which computes the transmittance of Earth's atmosphere at near- and far-infrared wavelengths. We compare the capabilities of this program with others currently available and demonstrate its utility for observational data calibration and reduction. The program employs current water-vapor and ozone models to produce fast and accurate transmittance spectra for wavelengths ranging from \(0.8 \mu \mathrm{~m}\) to 10 mm .

\section*{1. INTRODUCTION}

During the last year, through the acquisition of an augmented data base and the improvement of existing software algorithms, we have developed a software tool, "ATRAN," which accurately and efficiently models Earth's atmospheric transmission of radiation ranging from 0.8 to \(10,000 \mu \mathrm{~m}\) in wavelength, which includes the near-infrared (NIR), far-infrared (FIR), and microwave windows. This report describes the main features of this new software product, and gives instructions for its use.

The virtues of the new software over existing packages include its high accuracy and ability to model both high- and low-resolution ( \(\Delta \lambda / \lambda=0.0001\) to 0.1 ) spectral profiles. The program achieves high accuracy by modeling Earth's atmosphere in detail, using ozone and water-vapor models derived from detailed observations. The program performs its calculation efficiently, making it especially useful for real-time applications.

Since the software identifies spectral lines present in high-resolution NIR, FIR, and microwave spectralline observations, it is useful in the routine wavelength calibration of the spectrometers used to make such observations. The software is also particularly useful for determining the extinction toward astronomical sources as a function of wavelength, observational altitude, and zenith angle, and for correcting the observed flux. The program output consists of numerical data files, and screen and hardcopy graphical displays.

Our work relies largely on previous NIR and FIR studies of Earth's atmospheric absorption properties, including studies of the atmospheric absorption of the emission lines from astronomical objects. In the following section we trace the development of this software from such studies.

We would like to acknowledge the help of Richard Freedman in supplying us with the HITRAN data base, as well as invaluable advice regarding its use. We thank David Goorvitch for encouraging us to expand the scope of the software and the domain of its use, and for providing the necessary support to make this project possible. We also thank Jason Craig for his help with the broad line search, and in preparing this document using TeX.

\section*{2. COMPARING THIS PRODUCT WITH OTHERS}

Currently, there are several computer programs available for modeling atmospheric transmittance. Here we describe some of those programs, and trace their evolution as software tools used within the Space Science Division at Ames Research Center. Attributes of the various programs are listed and compared with those of ATRAN. Another product, available from the Jet Propulsion Laboratory, is also mentioned.

The program DEGRADE (ref. 1) provided the basis for the programs ATMOS and CDG21 (refs. 2 and 3), which were implemented on a CDC 7600 and an HP 2100 computer at Ames. The authors of references 2 and 3 also utilized some of first spectral-line lists compiled by the Air Force Geophysical Laboratories (AFGL, now Phillips Research Laboratories, PL). These programs are now obsolete, but they formed the basis of further work, and references 1-3 contain very concise and useful descriptions of the process of modeling atmospheric absorption lines.

As an improvement to this software, the program NWATR was modified from DEGRADE in 1976, by J. Simpson at Ames, for use on an HP 1000 computer. NWATR was moved to the Ames CRAY YMP computer and was extended to handle shorter wavelengths (to \(3 \mu \mathrm{~m}\) ) in 1988. This CRAY NWATR version is also called DEGRADE.

In 1989 a new program, ATRAN, (the product described herein) was written at Ames to run on a VAX 8600. In 1991 a second version of ATRAN was produced to run on UNIX machines (Sun workstations, and a DEC Ultrix system). The spectral-line list for all versions of ATRAN, as well as for the CRAY version of NWATR, is the newest 1991 HITRAN data base (ref. 4) provided by PL.

Independent of these efforts, PL, in an ongoing large-scale project of the USAF Systems Command,
has produced a series of atmospheric modeling programs. The most recent versions are called LOWTRAN7 (ref. 5) and FASCOD3 (refs. 6 and 7). This same group has continually refined and expanded their data base of atmospheric lines, which was formerly called the AFGL data base; it is now called the HITRAN data base. HITRAN is the data base that all of the programs-FASCOD3, NWATR (the CRAY version), and ATRAN-currently use.

The source code for FASCOD3 and the object code for LOWTRAN7 (a PC version) are available in the Space Science Division (from R. Freedman and the author, respectively), although owing to their size, neither program has ever been compiled and run. Portions of FASCOD2 have been extracted and used in programs written by R. Freedman on the CRAY YMP to model planetary atmospheres such as those of Venus and Mars. FASCOD2 for the PC (in a version called PCLnTRAN) is available from the ONTAR Corporation of Brookline, Massachusetts.

The programs NWATR, ATRAN, and FASCOD are described and compared below.

\section*{NWATR}

The acronym NWATR begins with N as a tag for spectroscopy software, and WATR stands for water vapor absorption, etc. The great virtue of this program is its simplicity. Although other programs may give results that are more accurate than those of HP 1000 NWATR (by several percent in some cases), NWATR is relatively short and simple. The program ATRAN is about an order of magnitude longer and more complex than NWATR, and FASCOD is yet another order of magnitude more complex than ATRAN. NWATR is primarily set up to model the atmosphere above \(41,000 \mathrm{ft}\). Its model divides the atmosphere into 1,10 , or 20 layers, assigning to the layers characteristic pressures above \(41,000 \mathrm{ft}\); the pressures may be linearly scaled. The atmosphere is described by a single temperature, which also may be reset. The program searches for lines residing a fixed number of wave numbers outside the range of interest for deep lines, looking for line wings which may cause absorption in the range. This procedure is sufficient at high altitudes for most FIR wavelengths with \(\lambda>9 \mu \mathrm{~m}\).

The CRAY version of NWATR has recently been augmented to access the latest PL data base, HITRAN. The program has also been equipped with a 10 -layer
atmospheric ozone model, pressures to sea level pressure, and a temperature function with altitude, and has been extended to calculate emission lines in addition to absorption lines. Access is only possible through the CRAY, or to the older version residing on an HP 1000 (soon to be discarded). Detailed comparisons of the CRAY NWATR and the ATRAN have not been conducted; each program has undergone recent improvements.

\section*{ATRAN}

ATRAN (Atmospheric TRANsmission) was written to accomplish several goals. These goals, in general, involve an increase in accuracy over existing software without a loss in execution speed.

One goal is to model the atmosphere in more detail so as to accurately calculate atmospheric transmittance from altitudes ranging from 0 to 30 km . For this purpose, we use several detailed atmospheric models from the literature. These include models for the mixed gases, water vapor, and ozone (all these input models are described in sec. 4). The program is versatile in using the models, dividing the gas distributions into an arbitrary number of layers of equal mass, and raising or lowering the water and ozone distribution with altitude to match conditions observed. A useful approximation, the "Curtis-Godson" approximation, is also used to model the uppermost layer in the calculations.

The program covers a wide range of wavelengths, from 0.8 to \(10,000 \mu \mathrm{~m}(8000 \AA\) to 10 mm\()\), thereby including the near-infrared, the far-infrared, and the microwave windows. To handle this wide range, the program performs its calculations specially for the particular wavelength range selected. For example, to compute the integration step in wave number, the program considers the pressure at the highest atmospheric layer (which determines the width of the narrowest lines), the typical line width at the given wavelength, and the resolution degradation caused by the user-selected smoothing function. Likewise, the program knows the location of very deep lines within these windows, lines that have wings extending several hundred wave numbers. When attempting to compute transmittance spectra near these lines, the program will extend its integration range to take into effect the wings from these lines. The cutoff criterion for weak lines (lines with wings that are sufficiently shallow to constitute a negligible opacity) is determined in part by a knowledge of
the number of contributing lines at a particular wavelength. The program keeps track of the number of absorption lines present per wave number as a function of wave number. The program can also handle a large wavelength range, computing transmittance spectra spanning up to 800 wave numbers. The user is given a choice of smoothing functions, or an additional "no-smoothing" option, which will produce a quick look at the true transmittance, independent of measuring instruments. The Lorentz line shape is used at wavelengths below \(100 \mu \mathrm{~m}\), whereas the more precise kinetic (Van Vleck) line shape is used at longer wavelengths.

To assist in laboratory settings, the program has a "tank" mode, in which a single gas, such as water vapor, or \(\mathrm{D}_{2} \mathrm{O}\), is modeled on the basis of the pressure, gas column density, and temperature within the tank, that is, one layer.

An important feature of the program is the production of presentable, self-documented plots, which contain a legend describing all the input information that went into the production of the particular transmittance profile. This is accomplished by means of a MONGO interactive plot command file produced by the program. The plot axes may be configured variously for wave number, wavelength, or velocity. Additionally, in plots showing significant atmospheric absorption, the deepest 40 lines in the profile are marked, and the absorbing species are identified at the bottom of the plot. The plotting capability extends to various graphic screens, \(X\) and SunView windows, and laser printers. Also, the user is given a file containing the plot commands, and another file containing the sampled function.

A final important attribute of the program is its portability. Currently, versions of the code are running identically under UNIX and VMS environments. Along with the program, the HITRAN data base (in a condensed form) is supplied, as well as programs that will read and write the data base in ASCII and binary.

NWATR and ATRAN are found to run comparably fast on the same machine, producing a transmittance profile typically in less than a minute.

Appendixes A-C list ATRAN and give instructions for its installation and operation.

\section*{FASCOD}

Most of the attributes of ATRAN described above are also present in the Fast Atmospheric Signature

Code (FASCOD). Earth's atmosphere is modeled here in many spherical layers and emphasis is placed on the program's ability to efficiently sample (sort through) the spectral-line list in preparing a transmittance profile. The program will compute radiance (emission) in addition to atmospheric absorption. FASCOD models the same large range of wavelengths spanned by ATRAN, since both programs use the same Phillips Research Laboratories (PL) HITRAN data base.

FASCOD contains many refinements for computing transmittance and radiance profiles. These include computing the effect of line coupling (below two wave numbers), continuum emission, and continuum absorption of line emission. Continuum functions within the program are also used to correct line shapes for impact broadening. The program will treat Earth atmospheres that are out of local thermodynamic equilibrium, and will also accept a foreign atmosphere of the user's construction. Upper atmosphere gases at altitudes up to 120 km are included in the models, which contain a variety of aerosols. FASCOD has also been equipped with routines from the associated PL product LOWTRAN (which computes transmission at low resolution). These routines take into account Earth atmospheric changes with climate, latitude, season, and weather. FASCOD is a much larger and more general product than NWATR or ATRAN. We do not have specific information about its total size and speed. It clearly has attributes that are beyond the needs of many of the current users of ATRAN and NWATR, and it presumably runs significantly more slowly. We note that the information we report here on FASCOD is gathered from reference 7, and not from experience with the program.

\section*{JPL Data Base}

There exists another atmospheric data base (ref. 8), concentrated at wavelengths longward of \(30 \mu \mathrm{~m}\), extending into the millimeter range. This effort is conducted at the California Institute of Technology and at the Jet Propulsion Laboratory. The authors have collected a large catalog of line transitions for 130 atomic and molecular species. (The products above model fewer species. FASCOD models about 28 species, and ATRAN and NWATR select the most abundant 7 of these. The CRAY NWATR program, in one version, now also models the additional "trace species.")

We have recently learned of two other codes. The first, GENLN, is very similar to FASCOD, and was developed at Oxford University, transported to NCAR by David Edwards, and developed further there. The second, IRTRAN, is used at Goddard Space Flight Center. We have no further information on these codes.

\section*{3. BASIC MATHEMATICS}

We now discuss the fundamental calculations performed by ATRAN. Our discussion follows the treatment of Augason and Burnes (ref. 2). The transmittance, \(t\), is defined as the fraction of radiative intensity that passes through the atmosphere unabsorbed, \(t=I / I_{0}\). Transmittance within a wavelength band (or wave-number band, where wave number \(\sigma \mathrm{cm}^{-1}\) is given by \(\sigma=10000 / \lambda\) ), with \(\lambda\) in microns, is calculated at finely spaced wave-number intervals. At each wave number \(\sigma\), the absorption due to the relevant molecular transition is computed. The absorption depends on the ambient temperature, pressure, and gas density, and in order to correctly characterize these atmospheric parameters with altitude, we divide the atmosphere into multiple layers. At a specific wave number \(\sigma\), for each molecular transition and each atmospheric layer, a column density \(\omega\) and an absorption coefficient \(\kappa\) are determined. At a particular wave number \(\sigma\), the \(\kappa \omega\) values are summed for all the contributing transitions (indexed \(i\) ), and layers (indexed \(l\) ). The exponentiation of \(-\kappa \omega\) gives the transmittance:
\[
t(\sigma)=\exp \left(-\sum_{i, l} \kappa_{i, l}(\sigma) \omega_{i, l}\right)
\]

The number of significantly contributing transitions I , where \(i=1\) to I , depends on the wave number, and may range from zero to thousands. In the above expression, the absorption coefficient \(\kappa\) for the \(i\) th transition is given by
\[
\kappa_{i}(\sigma)=S_{i} L\left(\gamma_{i}, \sigma\right)
\]
where \(S_{i}\) is the line strength for the \(i\) th transition, and \(L\) is the line-shape function centered at wave number \(\sigma_{i}\) with a half width at half maximum (HWHM) given by \(\gamma_{i}\). For wavelengths less than \(100 \mu \mathrm{~m}\), a Lorentzian line shape accurately describes the (pressure-broadened) lines:
\[
L\left(\gamma_{i}, \sigma\right)=\frac{1}{\pi} \frac{\gamma_{i}}{\left(\sigma-\sigma_{i}\right)^{2}+\gamma_{i}^{2}}
\]

At longer wavelengths, an approximation to the classical line shape (refs. 9-11), sometimes called the "kinetic" line shape, is appropriate:
\[
L\left(\gamma_{i}, \sigma\right)=\frac{1}{\pi} \frac{\sigma \sigma_{i} 4 \gamma_{i}}{\left(\sigma^{2}-\sigma_{i}^{2}\right)^{2}+4 \gamma_{i}^{2} \sigma^{2}}
\]

In each case, the function \(L\) is normalized to have unity area over the interval \(-\infty \leq \sigma \leq \infty\). The half width at half maximum \(\gamma_{i}\) scales with pressure \(P\) (atm) and temperature \(T\) as
\[
\gamma_{i}=\gamma_{i}^{0} P\left(\frac{296}{T}\right)^{n_{i}}
\]
where \(n_{i}\) varies for each transition (indexed by \(i\), the transition index), and averages between 0.5 and 0.62 . We note that the extreme wings of some lines, (e.g., \(\mathrm{H}_{2} \mathrm{O}\) lines in the microwave window), may not be well represented by these functions, as is discussed in reference 12. Also, reference 13 discusses in some detail the temperature dependence of absorption coefficients.

The line strength is corrected for stimulated emission at temperature \(T\) by
\[
\begin{aligned}
S_{i}= & S_{i}^{0}\left(\frac{T_{0}}{T}\right)^{m_{j}} \exp \left(-\frac{E\left(T_{0}-T\right)}{0.695 T_{0} T}\right) \\
& \times\left[\frac{1-\exp \left(\frac{-\sigma_{i}}{0.695} T\right)}{1-\exp \left(\frac{-\sigma}{0.695 T_{0}}\right)}\right]
\end{aligned}
\]
where \(T_{0}=296 \mathrm{~K}\) is the reference temperature for the transition parameters. The value \(m_{j}\) for species \(j\) describes the temperature dependence of the partition function, and depends on the species. Table 1 gives \(m_{j}\), a typical value for \(n_{i}\), the abundance in parts per million (ppm), and species index \(j\) for the seven most important atmospheric species. These are the seven species followed by the program.

Note that the exact value for \(n_{i}\) is available for each transition from the HITRAN data base, and ATRAN uses the data base value for each transition. (For some species, \(\mathbf{n}_{i}\) is dependent on the rotation quantum number J.)

The HITRAN data base (expanded from the former 1986 data base to include parameter corrections, additional weaker lines, a broader wavelength coverage, and more species, gives the following data for each transition: \(\sigma_{i}, S_{i}{ }^{0}, \gamma_{i}{ }^{0}, E, j\), and \(n_{i}\). Note that for isotopic transitions, the line-strength parameter in

Table 1. Specie parameters
\begin{tabular}{lcccc}
\hline \hline Molecule & \(\mathrm{m}_{j}\) & \(\mathrm{n}_{i}\) & Abundance, ppm & Index \(=\mathrm{j}\) \\
\hline \(\mathrm{H}_{2} \mathrm{O}\) & 1.5 & 0.62 & - & 1 \\
\(\mathrm{CO}_{2}\) & 1.0 & 0.5 & 330 & 2 \\
\(\mathrm{O}_{3}\) & 1.5 & 0.5 & - & 3 \\
\(\mathrm{~N}_{2} \mathrm{O}\) & 1.0 & 0.5 & 0.28 & 4 \\
CO & 1.0 & 0.5 & 0.75 & 5 \\
\(\mathrm{CH}_{4}\) & 1.5 & 0.5 & 1.6 & 6 \\
\(\mathrm{O}_{2}\) & 1.0 & 0.5 & 2.1 & 7 \\
\hline \hline
\end{tabular}
the data base has been weighted downward by the isotopic ratio, so that the column density \(\omega\) of the most common isotope may still be used to compute the line strength.

The atmospheric line data from HITRAN, in combination with model atmospheric physical parameters \(\omega, \mathrm{T}\), and P , provide the information necessary to compute a transmittance spectrum.

\section*{4. DETAILS OF THE CODE}

A sequential flowchart of the program is given below. The flow is controlled by a main program, which calls a succession of subroutines. The subroutines perform the functions necessary to compute one transmittance function. If additional functions are required, control returns to the beginning of the main program. The subroutines are as follows:

GETPRT Sets up the parts per million of atmospheric gases
GETLEV Reads in the standard atmospheric model table giving temperature, pressure, etc., at \(0.1-\mathrm{km}\) intervals
GETATM Shifts water vapor and ozone content of atmosphere in altitude if necessary
SCALGS Sets up the scaling coefficients for the line parameters \(S_{i}\) and \(\gamma_{i}\)
LEVELS Divides atmospheric model into layers
GETLAM Establishes wavelength range and resolution
GETPLO Sets up instrumental smoothing function for plot
GETSET Reads through spectral line data base to records of relevance
INTEG Integrates absorption line profiles at each layer

\section*{EXPO Exponentiates \(-\kappa \omega\) to determine transmittance}

PLOT Writes out the data array and a MONGO control file for plotting
Below we discuss key portions of the code which establish the atmospheric model, carry out the integration, and simulate the instrumental smoothing functions.

\section*{Earth Atmosphere Model}

The atmospheric model is set up in three stages. In the first stage, the user chooses fundamental parameters for the atmosphere: observational altitude, zenith angle, overhead water-vapor content (if available), and total ozone content (if available). The program also reads in a standard atmosphere parameter table (appendix D) which gives the temperature, pressure, and overhead column density for the mixed gases and the water vapor and ozone separately (figs. 1-4). The ozone data include a selection of four distributions in altitude that are typical for the latitudes \(9^{\circ}, 30^{\circ}, 43^{\circ}\), and \(59^{\circ}\) north or south. These have been taken from figure 5.7 of reference 14 .

At an arbitrary latitude, it is observed that when the total ozone column density changes, the shape of the density profile also changes, and the profile is likely to resemble one of the four profiles we have tabulated. The total column densities (in molecules \(\mathrm{cm}^{-2}\) ) of the profiles are \(6.86 \times 10^{18}\) (lat. \(9^{\circ}\) ), \(8.41 \times 10^{18}\) (lat. \(30^{\circ}\) ), \(1.03 \times 10^{19}\left(\right.\) lat. \(43^{\circ}\) ), \(1.21 \times 10^{19}\) (lat. \(59^{\circ}\) ). The program selects the profile most closely matching the observed total column of ozone (a value that may come from satellite observations). If no ozone value is supplied, the program assumes a value of \(9.13 \times 10^{18}\), which is typical for the latitude of \(39^{\circ}\) north or south (ref. 14). After selecting the best profile, the density


Figure 1. Atmospheric gas overhead column density falls exponentially with altitude (ref. 16); water vapor column density falls off more rapidly, as traced by balloon soundings (ref. 15).


Figure 2. Temperature and pressure of atmosphere (from ref. 16).


Figure 3. Ozone density profile at four latitudes (from ref. 14).


Figure 4. A detailed look at the water-vapor burden through the tropopause, where the overhead burden may drop to half, from altitude \(41,000 \mathrm{ft}\) to altitude \(45,000 \mathrm{ft}\), for example.
values at each layer are linearly scaled to match the observed total column density.

The density values for the atmospheric water-vapor content are taken from reference 15 . Especially important to airborne astronomy is the altitude gradient in the water-vapor burden through the tropopause. (By burden, we mean the overhead column density, toward the zenith. This quantity is sometime expressed as the height of an equivalent column of liquid water.) A typical water-vapor profile is shown in figure 1 , representing balloon flights at a latitude of \(39^{\circ}\). As the altitude of the tropopause rises and falls, the ambient pressure and density profile of the water-vapor component will do likewise. So, when the observed overhead water-vapor column density differs from the average profile tabulated in the model, the program moves the atmospheric profile (including the temperature and pressure profile) up or down in altitude (within reasonable limits) to best match the reported water-vapor column density. After an integer number of \(0.1-\mathrm{km}\) steps, to achieve the closest match, the profile is then linearly scaled in density to exactly match the observed value. If the user supplies no information of the overhead water content, the standard model is used, which gives, for example, a overhead burden of \(7 \mu \mathrm{~m}\) of (precipitable) water at \(41,000 \mathrm{ft}(12.5 \mathrm{~km})\) (fig. 4).

The mixed gases (indexed 2, 4-7 in table 1) are also modeled at \(0.1-\mathrm{km}\) steps, using a constant term for their concentration in parts per million as given in table 1 (from ref. 5). The gas densities, pressures, and temperatures are from the U.S. Standard Atmosphere (ref. 16), tabulated up to 30 km , as given in appendix D.

The second stage of setting up the atmosphere is to divide the atmosphere into several equal mass layers (excluding the gases above 30 km , which are treated separately). We find the altitudes that divide the mixed gases, water vapor, and ozone into equal mass layers separately, through the use of interpolation routines operating on the tabulated column densities with altitude. We then find the altitude that divides each layer into two equal masses, and save the temperature and pressure at this altitude to characterize the layer. A typical number of such layers might be five, that is, \(\mathrm{L}=5\). The three atmospheric components, ozone, water vapor, and the mixed gases, have very different distributions with altitude. By establishing a model with equal mass layers for each component separately, the temperature and pressure variations within each of these components are accurately tracked.

An additional feature of the program is the use of the Curtis-Godson approximation (e.g., ref. 2). This is considered the best way to model the overhead parameters if only a single layer is used, and also, for multiplelayer models, to parameterize the topmost layer (here comprising the gases above 30 km ). In this method, the average conditions above a ceiling altitude are set to the temperature and pressure of a specific (higher) altitude. For the mixed gases and ozone, this specific altitude is given by the altitude where the pressure is half that at the ceiling altitude. For water vapor, the approximation follows a different rule. For water vapor, the temperature and pressure are used from the specific altitude at which the water vapor is at a density that is half that at the ceiling altitude. For each ceiling altitude, the temperature and pressure values at half-pressure and half-density altitudes are tabulated.

In this way, the atmosphere is completely characterized by three sets of layers, where one set is for the mixed gases, one is for water vapor, and one is for ozone. Each set contains the temperature and pressure at the center of the layer, and the total column density of each layer. In each set, the layer column densities are equal except for the topmost layer.

The final stage of the atmospheric model setup is to predetermine the temperature-dependent coefficient \((296 / T)^{m}\) (sec. 3). This term affects the line strength for each species. We tabulate these terms once for each of the possible exponents \(m\) listed in table 1 , so as to integrate lines more efficiently.

\section*{Integrating Absorption Lines}

Computing a transmittance spectrum requires the integration of a few to thousands of absorption lines over many layers. An efficient integration algorithm depends on integrating only the relevant lines and only the relevant portions of those lines. By relevant, we mean significant, such that all excluded lines, or line portions, if included, would produce an additional loss of less then 0.001 in the reported transmittance. This value, \(\epsilon=0.001\), is our error specification.

There are four steps in making the selections of relevant line portions:
1. Determine how far beyond the specified wavelength range to search for broad contributing lines.
2. Determine, for each line within the search range, what, if any, is the relevant extent of the line wings.
3. Integrate accurately narrow lines.


Figure 5. Hypothetical example showing three wave-number ranges used by the program. All absorption lines, such as the four shown, centered within the outermost range, WNR, are considered, but only the portions of the these lines within the WNEXT range are added into the fine array. The fine array runs from WNEXT1 to WNEXT2. The fine array is smoothed (a Gaussian smoothing function is shown at the bottom of the plot) to produce the transmittance spectrum between WN2 and WN1. In this hypothetical spectrum, a deep line at 1360 wave numbers has significant absorption in its wings at 1260 . The smoothing function, centered at WN1, will include the absorption at 1260 to produce the smoothed absorption at WN1.
4. Determine the best sampling interval \((\Delta \sigma)\) for the integration.

Steps (1) and (2) are very much related, and present some difficulties. One difficulty is that the absorption contribution of an extended line wing may be small, but may be significant if many such wings overlap at a single wavelength. The absorption at some wavelengths is dominated by the summation of thousands of faint overlapping absorption line wings. Determining where this occurs is difficult, and can lead to a bit of a vicious circle. The circle goes like this: the extent of a line that we should consider is determined by what we consider to be a significant level of absorption. A significant absorption level is fixed by our maximum tolerance ( \(\epsilon=0.001\) ) and by how many such line wings could possibly overlap at a point. But the number of such line wings depends on the width of the relevant portion of each line, thus completing the circle.

We have completed step (1) empirically for two altitude ranges: a ground-based, mountain-based, and
low-altitude airborne range ( \(0 \leq\) altitude \(\leq 39,000 \mathrm{ft}\) ); and, an airborne observation range (altitude \(\geq 39,000 \mathrm{ft}\) ). The method of finding the maximum wave-number range in which to search for deep lines was to frame the search in the most extreme situations. We chose an extreme zenith angle of \(80^{\circ}\) and a single-layer atmosphere (thus maximizing pressure and temperature broadening effects).

We considered all deep absorption line features and determined how far away, in wave number, from the line center the absorption becomes insignificant. This was computed for the ground-based and airborne cases, from 0.8 to \(10,000 \mu \mathrm{~m}\) We encoded the results into tables within the program (see subroutine SEARCH), and used these tables to conduct efficient line integrations. The variable IWINGS holds the distance expressed in wave numbers.

As shown in figure 5, the range of wavelengths for which the user would like transmittance information is given by the variables (WL1I, WL2I), which stand for wavelength 1 (input), wavelength 2 (input). These are
equated to the wave numbers (WN1, WN2). The instrumental resolution is given by DWNI which stands for the delta-wave-number inputted. The program prepares a spectrum beyond the (WN1, WN2) range. The extended range, given by (WNEXT1, WNEXT2), is an integer number of instrumental FWHM widths, so that the effects of lines beyond the edge of the spectrum are included. The integer is called ISLITS in the program, and ISLITS \(=2\). Thus, WNEXT2 \(=\) WN2 + ISLITS \(\times\) DWLI. In the program, this range is also called (F1, F2), which stands for the first and last wave numbers of the "fine" array, where fine refers to the high-resolution integration array. However, lines that contribute to the range (WNEXT1, WNEXT2) may have centers outside this range. The search range for (WNEXT1, WNEXT2) is (WNR1, WNR2) where WNR2 = WNEXT2 + IWINGS, as explained above. Figure 5 show the three ranges. (WN1, WN2) is requested of the user. The program prepares a spectrum for the range (WNEXT1, WNEXT2) drawing on lines that originate within (WNR1, WNR2). In this hypothetical example, the smoothing function is shown at the bottom of the plot, at the far edge of the requested range. Its wings are considered out to WNEXT1, where a deep line, centered within WNR1 affects the transmittance.

The second step, regarding how far out to integrate a line's wings for lines within (WNR1, WNR2) is accomplished as follows:

Suppose there are \(N\) absorption lines which have an absorption coefficient \(\kappa\) in each of \(L\) layers at a particular wave number. Then the transmittance is
\[
t=e^{-N L \omega^{\prime} \kappa}
\]
where \(\omega^{\prime}=\omega / \mu\), with \(\mu\) being the cosine of the zenith angle, so as to account for the number of air masses along a line of sight.

To calculate an absorption cutoff, we assume there are \(\mathbf{N}\) lines exactly at the cutoff absorption level at a particular wavelength. (Assuming all excluded absorptions are at a level equal to the cutoff is a worst-case scenario which allows us to calculate the cutoff.) We have
\[
(1-\epsilon)=e^{-N L \omega^{\prime} \kappa}
\]

With \(\epsilon=0.001\), all the excluded absorption lines together could contribute at worst a \(0.1 \%\) loss in transmission. Solving for \(\kappa\) and then \(S\),
\[
\ln (1-\epsilon)<-N L \omega^{\prime} \kappa
\]
with
\[
\begin{aligned}
\kappa & =\frac{S \gamma}{\pi\left(\Delta \sigma^{2}+\gamma^{2}\right)} \\
\frac{-\pi \ln (1-\epsilon)}{L N} & =\omega^{\prime} \frac{S \gamma}{\Delta \sigma^{2}+\gamma^{2}} \\
\text { CONST } & =\frac{-\pi \ln (1-\epsilon)}{L}
\end{aligned}
\]

At this point we wish to know \(N\), the maximum number of lines that could have a contribution at the wave number in question. To do so, we have made a table of the number of line centers per wave number extending from 0.8 to \(10,000 \mu \mathrm{~m}\) (in the file SKIPA.DAT). (This table is also used to efficiently advance the HITRAN data base to the relevant records.) We use the table and an extreme line width of 6 wave numbers (set by the variable JWINGS), and find the total number of lines centered within \(\pm 3\) wave numbers of each \(\sigma\) within the range. The maximum value so obtained is called MAXLPN (maximum overlaps per wave number), and is tabulated in subroutine GETSET. We then have:

MAXLPN (Maximum number of overlapping lines per wave number) \(=N\)

So now,
\[
\frac{\operatorname{CONST}}{\operatorname{MAXLPN}}=\frac{\omega^{\prime} S \gamma}{\Delta \sigma^{2}+\gamma^{2}}
\]
and
\[
\Delta \sigma_{\max }=\left(\omega^{\prime} S \gamma \frac{\text { MAXPLN }}{\mathrm{CONST}}-\gamma^{2}\right)^{\frac{1}{2}}
\]

This last expression tells us how far to integrate a line. Various cases are handled in subroutine INTEG. For a line centered at \(\sigma_{i}\), the significant range is \(\sigma_{i} \pm \Delta \sigma_{\max }\). If the term within the square root is negative, the line is everywhere too weak, and it is rejected. If the entire range \(\sigma_{i}-\Delta \sigma_{\max }\) to \(\sigma_{i}+\Delta \sigma_{\max }\) lies outside of (WNEXT1, WNEXT2), again, we reject the line. If part or all of a line is within the range, the entire line is integrated or at least the part of the line extending to the fine array edge. Finally, if \(2 \times \Delta \sigma_{\max }\) is less than the resolution of the fine array, a special integration technique is used. We model such narrow lines with a triangle function to determine the mean absorption within the interval and integrate this value into the fine array. A comparison of a triangle function and a Lorentzian is shown in figure 6. It may be
seen here that for the region within \(|\sigma|<0.5\) FWHM, the triangle function provides a good approximation to the Lorentzian. The occurrence of such under-resolved lines is counted by the variable IDELIN (delta functions inside the range), and is rather infrequent. (This therefore accomplishes step (3) above.)

Finally, we discuss the resolution (step (4)). The fine array, dimensioned \(F(1000000)\), is used to sum the absorption from each line and each layer. This is done by INTEG. The wave-number resolution of this array, \(F D\), is determined by \(F D=\) RESRB \(\times \mathrm{P}(\mathrm{L}-1)\), where RESRB is the resolution "rock-bottom," the resolution required to handle sea-level line widths, (i.e., lines at 1 atm ). We are scaling this value by the pressure to correctly model the line shapes of narrow lines from regions of low pressure. From examining a histogram of line widths ( \(\gamma_{i}\) ) over the entire wave-number range (fig. 7), we have determined that RESRB be set to 0.01 wave numbers. \(\mathrm{P}(\mathrm{L}-1)\) is the pressure characterizing the top of the atmosphere model, just below the \(L t h\) layer, whereas the \(L t h\) layer includes only the
gas above 30 km . In a multiple-layer atmosphere, each layer will typically hold much more mass than the \(\mathrm{L} t h\). In a one-layer atmosphere, we use the Curtis-Godson pressure for \(\mathrm{P}(\mathrm{L}-1)\). For one layer and an altitude of \(41,000 \mathrm{ft}\), the resolution of the fine array is typically a little less than 0.001 wave numbers. When we divide the atmosphere into \(L\) layers, then the larger the value of L , the closer the center of the \(\mathrm{L}-1\) th layer will be to the 30 km , and therefore the smaller the pressure of the \(\mathrm{L}-1\) th layer will be. For a given observing altitude, as L goes up, \(\mathrm{P}(\mathrm{L}-1)\) will go down, and DF will go down.

It is important to note that since the number of resolution elements, NF, given by NF = (NWEXT2WNEXT1)/DF, goes as L, and the number of layers goes as \(L\), the length of time required to compute a transmittance spectrum goes as \(\mathrm{L}^{2}\). When high accuracy is not required, for example, if \(\sim 3 \%\) errors are acceptable at the centers of lines, then a single layer, \(\mathrm{L}=1\), will usually suffice, depending on the instrumental resolution.


Figure 6. Lines significantly narrower than the fine array step are estimated with a triangle function, which provides a good estimate of the Lorentzian line shape within the central 0.5 FWHM (full width at half maximum) as seen here.


Figure 7. A histogram of \(\gamma_{i}\) is shown for the wavelength range between 0.8 and \(10,000 \mu \mathrm{~m}\); a very small fraction of the lines have widths narrower than 0.01 wave numbers, the largest resolution that the program will use for the fine array.

\section*{Instrumental Profiles}

The ATRAN program will compute any one of four instrumental profiles, a triangle, a Gaussian, a sinc function, and a rectangle. These are shown in figure 8, all on the same axes, with the \(x\)-axis in FWHM units and the \(y\)-axis with normalized maxima. The rectangular function, with its sharp falloff, will tend to retain the high frequencies present in an unsmoothed profile, unlike the other functions. Smoothing occurs in a very straightforward manner. To compute a smoothed value at a particular wave number, the smoothing function is aligned with that point, and the fine array is averaged over a \(2 \times\) FWHM span of the smoothing function.

A "no-smoothing" option is also available. Here the fine array will be written out just as it appears, if space allows (the limit is currently set to 20,000 elements, the data-point limitation of a MONGO ( \(\mathrm{x}, \mathrm{y}\) ) plot). This represents the atmospheric transmittance as seen without any instrumental degradation in resolution. If the fine array contains more than 20,000 elements, the program will select the lowest integral sampling interval for the data points (e.g., each second, each third) and output these as the output data file. The no-smoothing option is the fastest, because the data are simply copied-out.

Plots of transmittance from flight and sea-level altitude are displayed for the entire wavelength range in appendixes \(\mathrm{E}-\mathrm{G}\).


Figure 8. The four instrumental profiles, triangle, Gaussian, rectangle, and sinc, are plotted as a function of the FWHM (full width at half maximum).

\section*{REFERENCES}
1. Deutschman, E. M.; and Calfee, R.: Two Computer Programs to Produce Theoretical Absorption Spectra of Water Vapor and Carbon Dioxide. Report IER 31-ITSA 31, Institute for Environmental Research, Boulder, Colo., 1967.
2. Augason, Gordon C.; and Burnes, Nancy S.: CDG21: A Computer Program for Computing Atmospheric Transmission Using the C-141, HP-2100 Computer. NASA TM-73194, 1977.
3. Augason, G. C.; Mord, A. J.; et al.: Water Vapor Absorption Spectra of the Upper Atmosphere ( \(45-185 \mathrm{~cm}^{-1}\) ). Applied Optics, vol. 14, 1975, p. 2146.
4. Rothman, L. S.; et al.: The HITRAN Database: 1986 Edition. Appl. Opt., vol. 26, 1987, p. 4058. (See also, J. Quant. Spectros. Radiat. Transfer, vol. xx, 1992, in press.)
5. Kneizys, F. X.; et al.: Atmospheric Transmittance/ Radiance: Computer Code LOWTRAN 6. Technical Report AFGL-TR-83-0187 (Phillips Research Laboratories) PL, Hanscom AFB, Mass., 1983.
6. Clough, S. A.; Kneizys, F. X.; Rothman, L. S.; and Gallery, W. O.: Atmospheric Spectral Transmission and Radiance: FASCOD1B. SPIE, vol. 277, 1981, p. 152.
7. Clough, S. A.; Kneizys, F. X.; Shettle, E. P.; and Anderson, G. P.: Atmospheric Radiance and

Transmittance: FASCOD2. 6th Conference on Atmospheric Radiation, Williamsburg, Md., 1986.
8. Poynter R. L.; and Pickett, H. M.: Submillimeter, Millimeter, and Microwave Spectral Line Catalog. Appl. Opt., vol. 24, 1985, p. 2235.
9. Townes, C. H.; and Schawlow, A. L.: Microwave Spectroscopy. Dover Press, New York, 1975, p. 341, equations 13.13-13.16.
10. Van Vleck, J. H.; and Weisskopf, V. P.: Absorption, Emission and Linebreaths. Rev. Mod. Phys., vol. 17, 1975, p. 227.
11. Gross, E. P.: Shape of Collision-Broadened Spectral Lines. Phys. Rev., vol. 97, p. 395.
12. Burch, D. L.: Absorption of Infrared Radiant Energy by \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\). III. Absorption by \(\mathrm{H}_{2} \mathrm{O}\) between 0.5 and \(36 \mathrm{~cm}^{-1}\). J. Opt. Soc. Am., vol. 58, 1968, p. 1383.
13. Heaton, H. I.: Temperature Scaling of Absorption Coefficients. J. Quant. Spectros. Radiat. Transfer, vol. 16, 1976, p. 801.
14. Brasseur, G.; and Solomon, S.: Aeronomy of the Middle Atmosphere. Reidel, Boston, 1986.
15. Mastenbrook, H. J.: Water Vapor Distribution in the Stratosphere and High Troposphere. J. Atmos. Sci., vol. 25, 1968, p. 299.
16. U.S. Standard Atmosphere. NASA, USAF, and National Weather Bureau, Washington, D.C., 1962.

\section*{APPENDICES}

\section*{APPENDIX A}

\section*{SOFTWARE LISTING OF ATRAN}

We list the UNIX implementation of the program. The VMS implementation differs only slightly.

PROGRAM ATRAN
C \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
C Calculates IR atmospheric absorption
C S. Lord - May 1988, Rev. July 1991

CHARACTER*1 A
COMMON /RANGE/WL1I,WL2I,DWLI, WNEXT1, WNEXT2,WNR1,WNR2, WLEXT1
1
WLEXT2, WLLINE, IZSKIP
COMMON /LIMIT/NFMAX,NRES,BOTL,TOPL,ISLITS, IWINGS, IPLOTN
1 , RESRB, AC, JWINGS
COMMON /WGAS/ WGASES (7,2), PALL \((3,300)\),TALL \((3,300)\)
1 , ITANK, LAYER
COMMON /FARRA/F (1000000)
COMMON /FVECT/F1,F2,FD,NF
COMMON /PVECT/P1, P2, PD,NP,NINST,IPLTCNT
COMMON /SKIPS/ISKIPWN(12500), ISKIPSUM (12500), ISKIPMAX (12500)
COMMON /PARRA/P(20000),IPTYPE
COMMON /TERM/ITERM
COMMON /STRONG/SLINES (80), ISPEC (80), SEW (80), ISTRONG
1
, IPOINT, STRENGTH
C (THE DIMENSION 12500 MAY CHANGE WITH THE SIZE OF THE AFGL FILE...)

Dimension of the "Fine" array (too big for an HP1000)
NFMAX \(=1000000\)
C Fractional accuracy spec. on final trans. spectrum \(\mathrm{AC}=0.01\)
C resolution Rock Bottom RESRB=0.01
C Fine array resolution is at max RESRB wave numbers
C times the top layer atmospheric pressure, in atm.s,
\(C\) which is typically less than 0.1 atm , and so
\(C\) the resolution of the fine array is typically a
C little less than 0.001 wave numbers.
\(C\) The fine array resolution can be set as small as the NRES=10
C user requires. It is always set to less than
C 1/NRES times the instrumental resolution to obtain
C accurate results.
\(C\) Lowest wavelength currently available (micrometers).
BOTL=0.8
C Highest wavelength currently available (micrometers).
TOPL \(=10000\)
C Look for wings from lines ISLITS instrumental
C slit widths beyond plot range.
ISLITS \(=2\)
C lines may overlap from the surrounding JWINGS WN's JWINGS=3
C Maximum number of points allowed in plot.

IPLOTN=20000
\(C\) Counts the number of diff. functions on 1 plot (1-9).
IPLTCNT=0
C Number of strong lines that will appear at the bottom ISTRONG \(=80\)
\(C\) of the plot, STRENGTH is the minimum values of STRENGTH=-ALOG(1-.05)
C - ln(equivalent width) required to get on the list
C************************************************************)
C** Main Entry Point

PRINT*
PRINT*
C
PRINT*,' Welcome to atmospheric modeling program!'
PRINT*
PRINT*,' If you don''t know what to answer to a question' PRINT*
WRITE(*,'(', Input Terminal type. '')')
WRITE (*,'(', 1 for Tektronics, 2 for \(X\) window, 3 for Sunview'
,' window',/,' 4 for GraphOn (1): '", \({ }^{\prime}\) ')
READ (*, *, ERR=1007) ITERM
PRINT*,'\{', ITERM,'\}'
IF (ITERM.LT.I.OR.ITERM.GT.4)GO TO 1007
WRITE(*,'(', Plot \(x\)-axis units in wavelength (um) [1], ,'
,''or wavenumbers ( \(\mathrm{cm}^{\wedge}-1\) ) [2] (1): ', \$)')
READ (*, *, ERR=1008) IPTYPE
PRINT*,' \({ }^{\prime}\), IPTYPE,' \(\} '\)
IF (IPTYPE.NE.1.AND.IPTYPE.NE.2)GO TO 1008
CONTINUE
WRITE (*,' ('' Input nominal max line width in wavenumbers '',
1 /.'' and deep line search in wavenumbers (temporary',
1 "' parameters) (3,20): '', \$')
READ*, JJWINGS, IIWINGS
PRINT*,'\{',JJWINGS,IIWINGS,'\}'
IF (JJWINGS.LT.1.OR.JJWINGS.GT. 20
1 .OR.IIWINGS.LT.1.OR.IIWINGS.GE.100) THEN PRINT*', Range is 1 to 20 and 1 to 100. Try again' GOTO 1
ENDIF
IWINGS=IIWINGS
JWINGS = JJWINGS
JWINGS \(=3\)
C
C Establish the parts per million of atm gases
CALL GETPRT
C Read in model atmosphere parameters
IF (ITANK.NE.1)CALL GETLEV
C Set-up the atmospheric or slab model
CALL GETATM

C Establish the wavelength range
2 CALL GETLAM
C Set-up the plot \(x\)-axis
CALL GETPLO
\(C\) Find section of atm. line data file of relevance CALL GETSET (IER)
IF (IER.EQ.1) GO TO 2
C Integrate all lines \& levels into the fine array CALL INTEG
C Convert opacity to transmission by exponentiating CALL EXPO
C Smooth the fine array into the plot array
CALL SMEAR
C Output the plot
CALL PLOT
PRINT 4
FORMAT(' Another function on this plot ( Y or N ) ( N ): ', \(\$\) )
READ 5,A
PRINT*', \(\left\{{ }^{\prime}, A, '\right\} '\)
5 FORMAT (A1)
IF (A.EQ.'Y'.OR.A.EQ.' \(\mathrm{Y}^{\prime}\) ) THEN
IF (IPLTCNT.EQ.10) THEN
PRINT*,' Maximum (9) exceeded'
STOP
ENDIF
GO TO 1
ELSE IF (A.NE.'N'.AND.A.NE.'n') THEN GO TO 3 ENDIF
PRINT*,' p.plo, a MONGO control file has been made. PRINT*', parray.datı, the output data has been written.' CLOSE (20) END

SUBROUTINE GETPRT
C ***********************************
C Finds the atmospheric constituents
C ***********************************
REAL PPM (2:7)
COMMON /WGAS/ WGASES (7, 2), PALL \((3,300), \operatorname{TALL}(3,300)\)
1 , ITANK, LAYER
COMMON /PART/PARTS (2:7), CDOZ,IDISTO3
COMMON /ATMJNK/AWV, AZ, AWVL, IATYPE, IALAY, IALT, TORR
DATA PARTS/330E-6,0.,.28E-6,.075E-6,1.6E-6,2.1E-1/,
C Gordon's Value Ozone Ozone Ozone Ozone
C 1 CDOZ/1.31E19/
Jan's Value Ozone Ozone Ozone Ozone [Pick one!]
\(1 \mathrm{CDOZ} / 6.68 \mathrm{E} 18\) /
Steve's value for lat 39 (TOMS data average) also \(1 \mathrm{CDOZ} / 9.13 \mathrm{E} 18 /\)
C Brasseur \& Solomon, Fig . 7 give the following
```

C totals for various latitudes....
C lat 9 30 43 59
C 6.86E18 8.41E18 1.03E19 1.21E19
C
2221 PRINT*,' Enter:'
PRINT*,' O for a standard atmosphere of mixed gases,'
PRINT*,' 1 for a single H2O layer (a tank),'
PRINT 22
22 FORMAT(' 2 for a special atmosphere, or -1 to exit (0): ',\$)
READ(*,*,ERR=2221)I
PRINT*,'{',I,'}'
IATYPE=I
IF(I.EQ.-1)STOP
IF (I.EQ.0) THEN
RETURN
ELSEIF (I.EQ.1)THEN
ITANK=1
RETURN
ENDIF
IF(I.NE.2)GO TO 2221
DO L=2,7
PPM(L)=PARTS (L) *1E6
ENDDO
WRITE (*,10) PPM (2), CDOZ, (PPM(J),J=4,7)
FORMAT(' Molecule: CO2 O3(tot/cm2) N2O ',
10
CO CH4 O2 './,
, Index: 2, 3
, 5 6 % 7 ,/
PPM: ',F5.0,' ',1PE8.2,' '
0PF6.2,1X,0PF6.3,1X,0PF4.1,3X,1PE7.1)
PRINT*,' Enter 0 to continue or the gas index number '
,'to change the ppm of that gas:'
READ(*,*,ERR=15)I
PRINT*,'{',I,'}'
IF(I.EQ.3)THEN
1033 PRINT*,' Ozone layer has total column density of ',CDOZ
PRINT*,' (this is looking through the entire atmosphere)'
PRINT*,' (in molecules per cm^2). New value (use a negative'
PRINT*,' number to input in Dobson units):'
READ (*,*, ERR=1033) CDOZ
PRINT*,'{',CDOZ,'}'
IF (CDOZ.LT.0)CDOZ=ABS (CDOZ)*2.69E16
C
C use the appropriate atmospheric ozone curve
C we have a selection of 4 distribution for the
C latitudes: 9, 30, 43, and 59,
C taken from Fig 5.7 B\&S, op cit.
C We choose the closest, based on the total
C column density. If the
C default O3 value is used (no adjustment), then
C the distribution defaults to the 59 lat. (IDISTO3=1).

```
```

C
C at the various lat.s we have: 6.86E18 8.41E18 1.03E19 1.21E19
C
IF (CDOZ.LT. 3E18) THEN
TYP=6.86E18/2.6E16
PRINT*,' That''s VERY little 03! Typical min is 6.86E18/\mp@subsup{\textrm{cm}}{}{*}2'
PRINT*,' which is ',TYP,' Dobson units'
ENDIF
IF (CDOZ.LT.7.635E18) IDISTO3=1
IF(CDOZ.GT.7.635E18.AND.CDOZ.LT.9.355E18) IDISTO3=2
IF(CDOZ.GT.9.355E18.AND.CDOZ.LT.1.12E19)IDISTO3=3
IF(CDOZ.GE.1.12E19) IDISTO3=4
IF(CDOZ.GT.2.4E19)THEN
TYP=1.12E19/2.6E16
PRINT*,' That''s a LOT of O3! Typical max is 1.12E19/cm^3'
PRINT*,' which is ',TYP,' Dobson units'
ENDIF
ELSEIF(I.GE.2.AND.I.LE.7)THEN
PRINT*,' Old value = ',PPM(I)
PRINT*, ' Enter new value:
READ (*,*, ERR=6861) PPM(I)
PRINT*,'{',PPM,'}'
PARTS (I) =PPM(I)/1E6
ELSEIF (I.EQ.0)THEN
RETURN
ENDIF
GO TO 15
END
SUBROUTINE GETLEV

```
```

C Reads in the atmospheric model

```
C Reads in the atmospheric model
C compiled by Gordon Augason NASA/Ames, and
C compiled by Gordon Augason NASA/Ames, and
C Described in the Documentation
C Described in the Documentation
C for program "CDG21" by Augason and Burnes
C for program "CDG21" by Augason and Burnes
C *************************************************************************
C *************************************************************************
    1
    1
        ,TH2O(292), TMIX (292),PH2O(292), PMIX (292),CO3(4, 292), IH2OTOP
        ,TH2O(292), TMIX (292),PH2O(292), PMIX (292),CO3(4, 292), IH2OTOP
        CHARACTER*1 A1
        CHARACTER*1 A1
C
C
    OPEN(1,FILE='/work/cgs/atran/model.dat',STATUS='OLD',ERR=123)
    OPEN(1,FILE='/work/cgs/atran/model.dat',STATUS='OLD',ERR=123)
C 1 READONLY)
C 1 READONLY)
C
C
C Advance past the header, ("/" in a FORMAT statement here is unsafe)
C Advance past the header, ("/" in a FORMAT statement here is unsafe)
C
C
FO0 FORMAT(A1)
FO0 FORMAT(A1)
        DO 1 I=1,292
        DO 1 I=1,292
1 READ(1,*,END=30,ERR=30)ALT(I),ST(I),SP(I),CH2O(I),SC(I),
1 READ(1,*,END=30,ERR=30)ALT(I),ST(I),SP(I),CH2O(I),SC(I),
    1 TH2O(I),TMIX(I),PH2O(I),PMIX(I),(CO3 (J,I),J=1,4)
    1 TH2O(I),TMIX(I),PH2O(I),PMIX(I),(CO3 (J,I),J=1,4)
        CLOSE (1)
        CLOSE (1)
        RETURN
        RETURN
30
30
    PRINT*,' Error reading model.dat'
```

 PRINT*,' Error reading model.dat'
    ```

STOP
123 PRINT*,' Can''t find model. dat'
 C ozone, and mixed gases in a n -layer model atmosphere

COMMON /PART/PARTS (2:7), CDOZ,IDISTO3
COMMON /ATMJNK/AWV, AZ, AWVL, IATYPE, IALAY, IALT, TORR
CHARACTER*11 MILMIC
COMMON /MODEL/ ALT(292),ST(292), SP(292), CH2O(292), SC (292)
1 , TH2O (292), TMIX (292), PH2O (292), \(\operatorname{PMIX}(292), \mathrm{CO}(4,292)\), IH2OTOP
COMMON /WGAS/ WGASES \((7,2), \operatorname{PALL}(3,300), \operatorname{TALL}(3,300)\)
1 , ITANK, LAYER
IF (ITANK.EQ.1) THEN
PRINT 501
FORMAT(' Enter pressure in Torr (millimeters of Hg, '
1 , 1/760 Atm) (15): ', \$)
READ (*, *, ERR=5010) TORR
PRINT*,'\{',TORR,'\}'
\(\operatorname{PALL}(1,1)=T O R R / 760\).
C
C Let's assume a room temperature. Labs are typically about 68 F.
\(\operatorname{TALL}(1,1)=293.15\)
5020
PRINT 502
502
FORMAT(' Enter water column density in micron (10): ', \$)
READ (*, *, ERR=5020) WVMIC
PRINT*,'\{',WVMIC,'\}'
AWV =WVMIC
AWVL =WVMIC
WGASES \((1,1)=(\) WVMIC \(/ 2.994 E-19) * 1 . E-20\)
5030
PRINT 503
503
FORMAT(' Enter D20 column density in microns (0): ', \$)
READ (*, *, ERR=5030) D20C
D2OG=(D2OC/2.994E-19)*1.E-20
LAYER=1
IALAY=1
CALI SCALGS
RETURN
ENDIF
C
C Start here for non-tank case, ie - an atmosphere
C
\(C\) We've read in the model already.
C (This will happen for each function plotted
\(C\) which is useful,
\(C\) because we rescale standard atmospheric density, \(P\) and \(T\)
C distributions.
```

C
C
C the overhead H2O column density in the atmosphere can be shifted,
C by which we mean we reset
C the distribution to reside at at higher or lower
C altitudes. The distribution can also
C be scaled (multiplied by a constant).
C Nominally, our lookup table of
C density, etc, stops at array elt 292.(29.1 km)
C This may be lowered
C for situations with less water than the standard model.
C
1 PRINT 11
11
2 ALTKM=ALTFT*.0003048
C
C Get overhead burden in molecules cm^-2 of H2O at this altitude
C WVMOD is the wv in precipitable microns
C WCOL is the WV in molecules / cm^3
C
WCOL=A1ATB1 (CH2O,ALT, 292,ALTKM, IERR)
IF(IERR.NE.0)THEN
PRINT*,' Altitude out of range 0 to 95,470 ft. try again.'
GO TO 1
ENDIF
WVMOD=WCOL*2.9940E-19
WVMOD1=WVMOD
AWV=WVMOD
MILMIC='Microns'
C
C Speak in the optimal units
C
IF (WVMOD.LT.1.OR WVMOD.GT.1E6) THEN
WRITE (*,15) WVMOD
15 FORMAT('The atmospheric model gives ',1PE9.3,
1 'microns of water toward the zenith.')
ELSE
IF (WVMOD.GE.1E3.AND.WVMOD.LT.1E6) THEN
MILMIC='Millimeters'
WVMOD1=WVMOD*1E-3
ENDIF
WRITE(*,20)WVMOD1,MILMIC
FORMAT(' The atmospheric model gives
1 ',F5.1,' ',A11,' of water,'
1 ,' toward the zenith.')
ENDIF
C
C Scale water vapor column density array if so desired
C

```
    PRINT*,' \(\{\) ', WV,'\}'

C
C Now, if the overhead H 2 O is different than the standard model, we \(C\) move the atmospheric H 2 O ,
\(C\) along with its Temp and Pressure up or down
C in Altitude. We do this at most \(10 \mathrm{~km}, 35,000 \mathrm{ft}\).
\(C\) We then mult the density at each layer by a scale factor to get the C overhead burden to exactly the value desired.

IF (WV.GT. 0) THEN
C
C find the altitude at which this burden occurs
TARGET=WV/2.994E-19
ALTNEW=A1ATB1 (ALT, CH2O, 292, TARGET, IERR)
IF (IERR.EQ.1) THEN
PRINT*,' The overhead burden of the model does not include' PRINT*,' this value in its range, we''ll scale std. profile.' GO TO 1010
ENDIF
ALTINFT=ALTNEW/. 0003048
C PRINT*,' This burden is found above ',ALTINFT,' ft in the model'
ALTDIF=ALTNEW - ALTKM IF (ABS (ALTDIF). GT.35) THEN
PRINT*,' This is too far to shift the water vapor, I we''ll just scale it...' GOTO 1010
ENDIF
C
C Shift atmospheric H 2 O distribution up or down.
C
ITENTHS \(=\) NINT ( \(10 *\) ALTDIF)
C
C If the appropriate altitude is within
C 0.1 km of the altitude being used
\(C\) (ALTKM) no shifting is necessary, just scaling
C
IF(ITENTHS.EQ.O)GO TO 1010
C
C If ITENTHS<0 then the user wants
C more overhead H2O. We shift the overhead
C column density found at each layer
C to a higher layer.
C Since CH2O(292) holds
C the total H2O above 29.1 km ,
\(C\) we deposit into this array element those layers
C shifted to altitudes above 29.1 km .
C The Curtis-Godson approx. will be slightly
C less accurate when \(\mathrm{N}=1\), since
\(C\) we are not rederiving the alt.
\(C\) at \(1 / 2\) density for \(T\) and \(P\).
\(C\) This will not be very different, nor important - if high accuracy
C is desired, then N should be greater than 1 anyway.
C
```

ITEN=IABS (ITENTHS)
IF (ITENTHS .LT.0) THEN
DO I=1,ITEN
CH2O(292) = CH2O(292) +CH2O(292-I)
ENDDO

```
C
C shift atm H2O up
C
    DO \(I=291,2,-1\)
    IF (I.LE.ITEN) THEN
        \(\mathrm{CH} 2 \mathrm{O}(\mathrm{I})=\mathrm{CH} 2 \mathrm{O}(1)\)
    ELSE
                            \(\mathrm{CH} 2 \mathrm{O}(\mathrm{I})=\mathrm{CH} 2 \mathrm{O}\) (I - ITEN)
                            ENDIF
                    ENDDO
        ELSEIF (ITENTHS .GT.0) THEN
C
\(C\) If ITENTHS<0 then the user wants less overhead H2O.
\(C\) We shift the overhead
\(C\) column density found at each layer down
\(C\) to a lower layer. CH2O(292) formerly
C held the total H2O above 29.1 km .
C Now we lower the altitude of the top layer
\(C\) by moving this element to a lower
C array location. I.e. the model for H2O
\(C\) now terminates lower than 29.1 km . Again,
C the Curtis Godson approx. will
C be slightly less accurate. (see above)
C
                                    DO \(\mathrm{I}=1\), 292-ITEN
                                    \(\mathrm{CH} 2 \mathrm{O}(\mathrm{I})=\mathrm{CH} 2 \mathrm{O}(\mathrm{I}+\mathrm{ITEN})\)
                    ENDDO
                            IH2OTOP=292-ITEN
        ENDIF
C
C see how we did ... recompute overhead H 2 O
C
    WCOL=A1ATB1 ( \(\mathrm{CH} 2 \mathrm{O}, \mathrm{ALT}, ~ I H 2 O T O P, ~ A L T K M, ~ I E R R) ~\)
    WVMOD1=WCOL*2.9940E-19
C PRINT*,' New Atm model gives ',WVMOD1,' microns'
    IF (ABS (WV-WVMOD1)/WVMOD1.gt . .2) then
        PRINT*,' Atm. shift failed!'
        STOP
        ENDIF
C
1010 CONTINUE
C PRINT*', SCALING H2O model'
    SCALE=WV/WVMODI
```

C PRINT*,' scale factor = ',scale
AWV=WV
IF (IATYPE.EQ.0) IATYPE=3
DO I=1, IH2OTOP
CH2O(I) =SCALE*CH2O(I)
ENDDO
ENDIF
C
C Now that we have out input model atmosphere, we break it into
C N levels, (N can be 1)
C
31 PRINT 311
311 FORMAT(' Number of atmospheric layers (2 recommended)(2): ',$)
 READ (*,*, ERR=31) LAYERS
 PRINT*,'{',LAYERS,'}'
 IF (LAYERS.LT.1.OR.LAYERS.GT.300) THEN
 PRINT*,' Number of layers must be between 1 and 300'
 GO TO 31
 ENDIF
 LAYER=LAYERS
 IALAY=LAYERS
331 PRINT 3311
3311 FORMAT(' Zenith angle through atmosphere (0=UP) (0): ',$)
READ(*,*,ERR=331) Z
PRINT*,'{',Z,'}'
IF(MOD (Z,180.).EQ.90)THEN
PRINT*,' Not allowed for this slab atmosphere.'
GO TO 331
ENDIF
AZ=Z
XMU=COSD (Z)
AWVL=AWV/XMU
CALL LEVELS (LAYERS,ALTKM,XMU)
CALL SCALGS
C PRINT*,'Got through'
RETURN
END
SUBROUTINE LEVELS (N,ALTKM, ZMU)
C ***
C Divides up the atmosphere into layers of equal mass
C ***
COMMON /PART/PARTS (2:7),CDOZ,IDISTO3
COMMON /MODEL/ ALT(292),ST(292),SP(292),CH2O(292),SC(292)
,TH2O(292),TMIX(292),PH2O(292), PMIX (292),CO3(4, 292), IH2OTOP
COMMON /WGAS/ WGASES (7,2),PALL (3,300),TALL (3,300)
, ITANK, LAYER
REAL CDO3(292),CO3CONS (4)
DATA CO3CONS/6.86E18,8.41E18,1.03E19,1.21E19/
ITP=IH2OTOP
IALT=ALTKM* 10+1

```
C
```

C
C In the model atmosphere there are 5 mixed gas components,
C and then there is water vapor and ozone. Ozone occupies its own
C special distribution as does H2O. We treat these components
C separately in the multi-layer integration.
C
C O3 and Water vapor share the T and P of the 5
C mixed components, w/a separate
C column density fn. with alt.. If more
C than one layer is requested (N > 1),
C we divide the mixed gas and water
C vapor each into N-1 layers between the
C observer's altitude and 29.1 km, such that
each layer contains equal mass.
We find the T and P at
the midpoint of each layer, and record these
data in WGASES, TALL, PALL for use
C in the integration. For the Nth layer
C (also, when N is l), we use
C the Curtis-Godson approximation.
C When N>1 the Nth layer is the
C gas above 29.1 km. When N=1, the
C approximation is used to the gas above
C the altitude of observation.
C The C.G. approximation approximates the average conditions
C above a
C given altitude by using C the atmospheric
C parameters T and P for the mixed
C gases which reside at a higher altitude,
C namely where the pressure is half
C the pressure at the given altitude. For
C water vapor the approximation uses
C a different rule. For water vapor, the
C T and P are used from an altitude
C at which the water vapor is at
C half the density as that at the altitude of
C observation.
C
C We load the best 03 distribution
C (determined in GETPRTS) into a local array,
C scaling to get the total to match the requested value.
C

```
```

DO I=1,292

```
DO I=1,292
    CDO3 (I) =CO3 (IDISTO3,I)*CDOZ/CO3CONS (IDISTO3)
    CDO3 (I) =CO3 (IDISTO3,I)*CDOZ/CO3CONS (IDISTO3)
ENDDO
ENDDO
C
C The routine loads up three
C arrays... WGASES( }7\mathrm{ species, 2 index)
C where index=1 is for the column density
C for N-1 layers of equal column density
C and index = 2 is for the
C Nth layer, it is the column density of all the
C gas above the N-lth layer (to infinity)
```

C When $N=1$, the index=1 term is used only,
C and it is the column density above
C the observation altitude.
C the other 2 arrays that
C are loaded are the pressure and
C temperature arrays, PALL ($3=\mathrm{H} 2 \mathrm{O}$, mixed,
C and 03, $300=$ max num of levels)
C and TALL likewise.
C The routine checks first to see if
C it is loading up a multi-layer atm
C and fills the arrays if this is
C so, else it loads a single layer atm ($\mathrm{N}=1$)
C
IF (N.NE.1) THEN
C
C This is a multi-layered atm.
C Do mixed gases, 03, and water vapor in tandem
C
CDBOT = A1ATB1 (SC , ALT, 292,ALTKM, IERR)
CDBOTW=A1ATB1 (CH2O, ALT, ITP, ALTKM, IERRW)
CDBOTO =A1ATB1 (CDO3, ALT, 292, ALTKM, IERRO)
IF (IERR.NE.O.OR. IERRW.NE.O.OR.IERRO.NE.0) THEN
PRINT*,'Alt. $=$ ',ALTKM,' out of range in sub. LEVELS'
STOP
ENDIF
C
C Get total column density between input alt and 29.1 km
C H2O may have been scaled. Use new value.
C
TOTLC $=$ CDBOT - $2.930 E 23$
TOTLCW $=$ CDBOTW $-\mathrm{CH} 20($ ITP $)$
TOTLCO $=$ CDBOTO $-\mathrm{CDO}(292)$
C
C We are interested in
C the layer centers. Find the column density at each
C
IDIVS $=(\mathrm{N}-1) * 2$
DELC =TOTLC /IDIVS
DELCW=TOTLCW/IDIVS
DELCO=TOTLCO/IDIVS
LEVEL=0
DO 300 I=1,IDIVS-1,2
C
LEVEL=LEVEL +1
XLAYC =CDBOT -I*DELC
XLAYCW=CDBOTW-I*DELCW
XLAYCO=CDBOTO-I*DELCO
C
C To find the $T^{\prime} s$ and $P^{\prime} s$, we interpolate from the column density C We only look at the arrays over the range between the altitude of C Observation and the top of the array
NUM=292-IALT+1

NWV = ITP - IALT +1
PALL (1, LEVEL) =A1ATB1 (SP (IALT), CH2O (IALT), NWV, XLAYCW, IE1)
PALL (2, LEVEL) =A1ATB1 (SP (IALT), SC (IALT) ,NUM, XLAYC, IE2)
PALL (3, LEVEL) =A1ATB1 (SP (IALT), CDO3 (IALT), NUM, XLAYCO, IE3)
TALL (1, LEVEL) =A1ATB1 (ST (IALT) , CH2O (IALT) , NWV, XLAYCW, IE4) TALL (2,LEVEL) =A1ATB1 (ST (IALT), SC (IALT) ,NUM,XLAYC, IE5) TALL (3, LEVEL) =A1ATB1 (ST (IALT) , CDO3 (IALT) , NUM, XLAYCO, IE6)
C

```
I .OR.IE4.NE.O.OR.IE5.NE.O.OR.IE6.NE.0)THEN
    PRINT*,' Column density(s) out of range in '
    ,'Sub. LEVEL, error flags are:
    ,IE1,IE2,IE3,IE4,IE5,IE6
    STOP
    ENDIF
```

CONTINUE
WGASES (IS, 2) $=($ CH2O (ITP) $/ \mathrm{ZMU}) * 1 . E-20$
C
ELSEIF (IS.EQ.3) THEN
C
C Ozone
C
WGASES (IS, 1) $=(2 . *$ DELCO $/$ ZMU $) * 1 . E-20$
WGASES $($ IS, 2$)=($ CDO3 $(292) / Z M U) * 1 . E-20$
ELSE
C
C Mixed gases
C
WGASES (IS, 1) $=(2 . *$ DELC $/$ ZMU $) *$ PARTS (IS) *1.E-20
WGASES (IS, 2) $=($ SC (292) $/ \mathrm{ZMU}) *$ PARTS (IS) *1.E-20
ENDIF

C Now we treat the top
C Nth level of the atmosphere using 29.1 km values

```
C
TALL(1,N)= TH2O(ITP)
TALL (2,N)= TMIX(292)
TALL (3,N)= TMIX(292)
PALL (1,N) = PH2O(ITP)
PALL(2,N)= PMIX(292)
PALL(3,N)= PMIX(292)
C
C If the user has requested a
C 1 layer atmosphere ( }\textrm{N}=1\mathrm{ ) then load this up instead
C
TALL (1,N) =A1ATB1 (TH2O,ALT, ITP, ALTKM,IE1)
PALL (1,N)=A1ATB1 (PH2O,ALT,ITP,ALTKM, IE2)
C
C Mixed gases, use T and P at 1/2 pressure
C
    TALL (2,N)=A1ATB1 (TMIX, ALT, 292,ALTKM, IE3)
    PALL (2,N) =A1ATB1 (PMIX,ALT, 292,ALTKM, IE4)
C
C Ozone if we are under 22 km (ie, we are not in a balloon or rocket)
C}\mathrm{ then we are under the
C bulk of the Ozone Layer - use T P parameters of
C 22 km, else, use the T and P at altitude
C
IF (ALTKM.LT.22) THEN
                            TALL (3,N) =A1ATB1 (ST,ALT, 292,22.,IE5)
                            PALL (3,N)=A1ATB1 (SP,ALT, 292,22.,IE6)
ELSE
TALL (3,N) =A1ATB1 (ST, ALT, 292,ALTKM, IE7)
PALL (3,N) =A1ATB1 (SP,ALT, 292,ALTKM,IE8)
ENDIF
    DO 600 IS=1,7
C
C H2O
C
IF(IS.EQ.1) THEN
WGASES (IS,N) =A1ATB1 (CH2O,ALT,ITP,ALTKM, IE9)
1
/ZMU*1E-20
C
C Ozone
C
ELSEIF (IS.EQ.3)THEN
WGASES (IS,N) =A1ATB1 (CDO3, ALT, 292,ALTKM, IE10)
I /ZMU*1E-20
C
C Mixed gases
C
```

ELSE
WGASES (IS,N) =A1ATB1 (SC ,ALT, 292,ALTKM, IE11)
1 /ZMU*PARTS (IS) *1E-20

1
2
3
1
2

CONTINUE
ENDIF
IF (N.NE. 1) PRINT*, T P TW, PW , $\operatorname{TALL}(2, N), \operatorname{PALL}(2, N), T A L L(1, N)$
1 , PALL (1,N)
Cd 1
c $\operatorname{OPEN}(7, F I L E=$ le.', STATUS = ' NEW')
c $\quad \mathrm{DO} I=1,2$
c WRITE (7,777)I, (WGASES (II, I), $I I=1,7$)
C777 FORMAT (1X, I1, 1X, 7 (E8.3,1X), /)
C ENDDO
C $\quad \mathrm{DO} J=1, N$
C WRITE (7,888) J, (PALL (K, J), K=1, 3), (TALL (KK, J), KK=1, 3)
c888 FORMAT (1X, I2, 1X, 6(E8.3,1X))
C ENDDO
C CLOSE (7)
RETURN
END
SUBROUTINE SCALGS

C Provides Gamma and S scale factors for line shapes
C for all N species $\mathrm{T}(1$,$) is \mathrm{H} 2 \mathrm{O}, \mathrm{T}(2$,$) is mixed gas, \mathrm{T}(3$,$) is 03$,
C \& likewise for P, and the S and Gamma scale factors, SSCALE, GSCALE
C (As usual, hundreds of memory locations (eg, $T(3,2: 300)$)
C are unused, because
C 03 is treated currently as a monolayer. Perhaps this will change.
REAL EXPM (3) , EXPN (3)
COMMON /WGAS/ WGASES $(7,2), \operatorname{PALL}(3,300), \operatorname{TALL}(3,300)$
, ITANK, LAYER
COMMON /SCALE/SSCALE $(3,300)$, $\operatorname{GSCALE}(3,300)$
DATA EXPM/1.5,1.0,1.5/,EXPN/0.62,0.5,0.5/
ITYPES=3
IF (ITANK.EQ.1) ITYPES $=1$ DO $K=1$, ITYPES

NLEV=LAYER
DO $I=1$, NLEV

(296. /TALL (K, I)) **EXPM (K) $\operatorname{GSCALE}(K, I)=\operatorname{PALL}(K, I) *(296 . / \operatorname{TALL}(K, I)) * * \operatorname{EXPN}(K)$

IF (ASPECIES.EQ.ASP(II)) THEN
WLLINE=ASPN (II)
PRINT 20131,ASPECIES,WLLINE
20131 FORMAT (1X, A5,' Wavelength = ',F8.4) GOTO 100 ENDIF
ENDDO
PRINT2014, ASPECIES
2014

100
1011
1
2
3

ENDIF
WLI=WLII
WL2 $=$ WL2 I
IF (WLLINE . EQ.0) WLLINE $=0.5$ * (WLII +WL2I)
IF (WL1.LT. BOTL.OR.WL2.GT.TOPL.OR.WL1.GT.WL2) THEN
PRINT*,' Invalid
1 range. Min, Max are: ',BOTL, TOPL,' microns'
PRINT*,' Try again...'
GO TO 100
ENDIF
C
C We set the variable IWINGS which tells how far out of the requested wavelength range deep lines could reside which might influence the C spectrum. We consider
C two cases, at or above flight altitude (Alt=41000 ft)
C IDEEP=1, and below flight altitude, or a tank IDEEP=2 C

```
        IDEEP=1
        IF(IALT.LT.41000.OR.ITANK.EQ.I)IDEEP=2
        CALL SEARCH(WLII,WL2I, IDEEP,IWINGS)
    111
    PRINT 1111
    1111 FORMAT(' Enter instrumental resolution in microns ',/,
        1 ' (0 for the CGS high resolution system',
        1', resolution = 60 km}/\textrm{s}),'/
        1. or -1 for no smoothing. (0): ', $)
        READ (*,* , ERR=11I) DWLI
        PRINT**''{',DWLI,'}'
        IF (DWLI.EQ.0)DWLI=RES (WLLINE)
        IF (DWLI.EQ.-1)DWLI=0
        IF(DWLI.LT.0)GO TO 111
        WLCENTER= . 5* (WL1I +WL2I)
        WNCENTER=WLORWN (WLCENTER)
        DWNI=DLORDN (DWLI, WLCENTER)
        DWNIN=DWNI /NRES
        WN1 =WLORWN (WL1)
        WN2 =WLORWN (WL2)
        IF(ITANK.NE.1)THEN
            IF (IAYER.EQ.1)THEN
                DWN=PALL (2,1) *RESRB
C PRINT*,' RESRB, PALL (2,1) ,DWN ',RESRB,PALL (2,1),DWN
                ELSE
                    DWN=PALL (2, LAYER-1) *RESRB
                ENDIF
    ELSE
        DWN=PALL(1, 1) *RESRB
    ENDIF
C PRINT*,'DWN, DWNIN ',DWN, DWNIN
    IF (DWLI .NE . O . AND .DWNIN . LT . DWN) DWN=DWNIN
C
C Check that the range & resolution
C requested will fit into the fine array, characterized by FVECT
C
```

```
WNEXT2 =WN2 - ISLITS*DWNI
```

WNEXT2 =WN2 - ISLITS*DWNI
WLEXT2 =WLORWN (WNEXT2)
WLEXT2 =WLORWN (WNEXT2)
IF (WLEXT2 .GT.TOPL) THEN
IF (WLEXT2 .GT.TOPL) THEN
PRINT*,' Warning, the instrumental slit',
PRINT*,' Warning, the instrumental slit',
1 ' will encompass no lines ',
1 ' will encompass no lines ',
1 'longward of ',TOPL,' um - these are not in the database.'
1 'longward of ',TOPL,' um - these are not in the database.'
WLEXT2=TOPL
WLEXT2=TOPL
WNEXT2 =WLORWN (TOPL)
WNEXT2 =WLORWN (TOPL)
ENDIF
ENDIF
WNEXT1 =WN1 +ISLITS*DWNI
WNEXT1 =WN1 +ISLITS*DWNI
WLEXT1=WLORWN (WNEXT1)
WLEXT1=WLORWN (WNEXT1)
IF (WLEXT1.LT.BOTL) THEN
IF (WLEXT1.LT.BOTL) THEN
PRINT*;' Warming, the instrumental slit'
PRINT*;' Warming, the instrumental slit'
1 ,' will encompass no lines ',
1 ,' will encompass no lines ',
'shortward of ',BOTL,
'shortward of ',BOTL,
1 'um - these are not in the database.'

```
1 'um - these are not in the database.'
```

```
            WLEXT1=BOTL
            WNEXT1 =WLORWN (BOTL)
            ENDIF
            XNTEST= (WNEXT1-WNEXT2) /DWN
            COMPARE=NFMAX
            IF (XNTEST + 1.LT. COMPARE) THEN
            NF=XNTEST+1
            F2=WNEXT2
            FD=DWN
            FI =WNEXT2 +FD*NF
            WNR1=WNEXT1 + IWINGS
            WLR1=WLORWN (WNRI)
            IF (WLR1 . LT . BOTL) THEN
            WLR1=BOTL
            WNR1=WLORWN (BOTL)
            ENDIF
    WNR2 =WNEXT2 - IWINGS
    IF (WINR2 .LE . O) WNR2 =1E-3
    WLR2 =WLORWN (WNR2)
        IF(WLR2 .GT . TOPL . OR .WLR2 . LT . O) THEN
            WLR2 =TOPL
            WNR2 =WLORWN (TOPL)
            ENDIF
C
C COMMON /FVECT/ is now set up for the fine array,
C
    ELSE
            DO IDECEXP=4,-5,-1
                            DO ICOEF=9,0,-1
                            DELWL=ICOEF*10.**(IDECEXP-1) +10.**IDECEXP
                    WLTEST1 =WLCENTER - DELWL - ISLITS*DWLI
                    IF (WLTEST1.LT.BOTL) GOTO }850
                    WNTEST1=WLORWN (WLTEST1)
                    WLTEST2 =WLCENTER +DELWL+ISLITS*DWLI
                    IF(WLTEST2.GT.TOPL) GOTO }850
                    WNTEST2 =WLORWN (WLTEST2)
                    XNTEST= (WNTEST1-WNTEST2)/DWN
C
PRINT*,' DEL WL1,WL2,XN ', DELWL, WLTEST1,WLTEST2,XNTEST
                            IF (XNTEST+1.LT.COMPARE)GO TO }900
                    CONTINUE
                    ENDDO
                    ENDDO
                    PRINT*,' Wavelength range too large, '
                    PRINT*, 'Trouble finding acceptable range...'
                GO TO 100
                    9000 WLI=AMAXI (BOTL,WLTEST1)
                        WL2=AMIN1 (TOPL,WLTEST2)
                PRINT 1001,WL1,WL2
                    1001 FORMAT(' Range too large. Try something like ',/,
                    1 F13.7,' - ',F13.7)
                                    PRINT*,' Enter new Lambda 1, Lambda 2'
```

```
    1
                ,', and/or resolution.'
        PRINT*,' Wavelength range too large. Try a smaller range.'
            GO TO 100
        ENDIF
    RETURN
    END
    SUBROUTINE SEARCH(WWL1,WWL2,IDEEP,IWINGS)
C
    REAL WNLST (8), SEARCHLST (8, 2)
    DATA WNLST/1, 280,600,740,1600,3200,3800,12500/
    DATA SEARCHLST/30, 10, 80, 10,800, 30, 10,0,
    1 200,200,200,200,800,200,200,0/
    WN1=10000./WWL2
    WN2 =10000./WWL1
        DO I=1,7
            IF (WN1.GE . WNLST (I) . AND .WN1 . LE . WNLST (I + 1) ) THEN
            INDEX1=I
            ENDIF
            IF (WN2 . GE . WNLST (I) .AND .WN2 .LE.WNLST (I +1) ) THEN
            INDEX2=I
            ENDIF
        ENDDO
        IWINGS=0
            DO I=INDEX1,INDEX2
IF (SEARCHLST (I, IDEEP) .GT .IWINGS) IWINGS=SEARCHLST (I, IDEEP)
            ENDDO
            IF(IWINGS.EQ.0) THEN
            PRINT*,' ERROR SETING IWINGS'
            STOP
            ENDIF
RETURN
END
    FUNCTION RES (WL)
C
C Give the resolution of the CGS "High Resolution System" for a
C specified wavelength
C
c for now...
    res=wl*60./3e5
    RETURN
    END
    SUBROUTINE GETPLO
C ***********************
C Get the plot parameters
C
```

COMMON /LIMIT/NFMAX, NRES, BOTL, TOPL, ISLITS, IWINGS, IPLOTN
1 , RESRB, AC, JWINGS
COMMON /FVECT/ F1, F2,FD, NF
COMMON /PVECT/P1, P2, PD,NP,NINST,IPLTCNT
COMMON /RANGE/ WL1I, WL2I,DWLI, WNEXT1, WNEXT2,WNR1, WNR2, WLEXT1
1 , WLEXT2,WLLINE,IZSKIP
C
C now for /PVECT/ which controls the plotting array
C
C Take care of case where there is now smoothing, instrumental res $=0$
IF (DWLI.EQ.0) THEN
IHOP $=$ NF $/$ IPLOTN +1
C
FORMAT(' The ''fine array', will be plotted, by sampling ', 1' each ', I3,' elements. Input 0 if',/, 2' this is OK, or else a larger integer element interval: ', \$)
$\operatorname{READ}(*, *, E R R=499)$ IHOP1
PRINT*,' $\{$, IHOP1,'\}'
IF (IHOP1.EQ.0) IHOP1=IHOP
IF (IHOP.GT.IHOP1) GO TO 499
IZSKIP=IHOP1
P1=WL1I
P2 = WL2 I
$\mathrm{NP}=\left(1 .{ }^{*} \mathrm{NF}\right) /$ IZSKIP
$\mathrm{PD}=(\mathrm{P} 2-\mathrm{P} 1) / \mathrm{NP}$
GOTO 100
ENDIF
C
PRINT*,' Setting the data point spacing ', 1'(sampling) to $1 / 5$ instrument resolution...' RESI $=0.2 * D W L I$
NIND $=($ WL2 2 -WLII) $/$ RESI
501 WRITE (*,5011)NIND
FORMAT(' There will be',I7,' points plotted.')
IF (NIND.LT. 3.OR.NIND.GT.IPLOTN) THEN
PRINT*,' Number of points must be greater than 2'
GOTO 599
ENDIF
IF (RESI. GE . . 0001.AND.RESI.LT.10.) THEN
WRITE (*, 502) RESI

FORMAT(' Their spacing will be ',1PE9.3,' microns.') ENDIF
PRINT 999
FORMAT(' Enter a new number of points, or 0 to keep these '
1 ,'values, or ',',' -1 to change the spacing (0): , $\$$) $\operatorname{READ}(*, *, E R R=599) L$ PRINT*,' $\{1, L, '\} '$

IF (L.GT.0) THEN
New \# of points
IF (L.GE. 2.AND.L.LE.IPLOTN) THEN
P1=WL1I
P2 $=$ WL2 1
PD=(WL2I-WL1I) /L
$\mathrm{NP}=\mathrm{L}$
ELSE
PRINT*,' Number of points must be greater than 2'
,' and less than ',IPLOTN
GO TO 501
ENDIF
ELSEIF (L.EQ.-1)THEN
New \# of points for new spacing
PRINT 888
FORMAT(' Enter new spacing in microns (.005): ', \$)
READ (*, *, ERR=8880) RESNEW
PRINT*,'\{',RESNEW,'\}'
L= (WL2I-WL1I) /RESNEW
IF (L.GE. 2.AND.L.LE.IPLOTN) THEN
P1=WL1I
P2 $=\mathrm{WL} 2 \mathrm{I}$
PD=RESNEW
$\mathrm{NP}=\mathrm{L}$
PRINT*,' ',NP,' points will be plotted.' ELSE
PRINT*,' ',L,' points result....' PRINT*,' Number of points must be greater than 2' ,' and less than ',IPLOTN,', (Mongo can''t handle' PRINT*,' many more). Try again...'
GO TO 501
ENDIF
ELSE
Use existing number of points
IF (NIND.GE. 2 .AND.NIND. LE.IPLOTN) THEN
P1=WL1I
P2 =WL2 I
PD=RESI
NP =NIND
ELSE
PRINT*,' Number of points must be greater than 2' ,' and less than ',IPLOTN,', (Mongo can''t handle' PRINT*,' many more). Try again...'
GO TO 501
ENDIF
ENDIF
NINST=5

```
    IF (B1.LT.B(I))THEN
```

 IERR=-1
 RETURN
ENDIF
IF (BI.GT.B(N)) THEN
IERR=1
RETURN
ENDIF

C
PRINT 3
1 , [4] Rectangle (2): ',\$)
$\operatorname{READ}(*, *, E R R=2)$ NINST
PRINT*,'\{',NINST,'\}'
IF (NINST.LT.1.OR.NINST.GT.4)GO TO 2
IF (NINST.EQ.3)CALL SINCO (DWLI)
ENDIF
RETURN
END
FUNCTION A1ATB1 (A, B, N, B1, IERR)
Interpolates to find
B array (the absissa) must be
monotonically increasing or decreasing
Error Flag: \quad IERR=0 No error
+1 greater

REAL A(N), B(N)
IERR=0
IF ($\mathrm{B}(1)$. LE. $\mathrm{B}(\mathrm{N})$) THEN
IF (DWLI.GT.0) THEN
PRINT*,' Select instrument profile function:
FORMAT(' [1] Triangle, [2] Gaussian, [3] Sinc.'،
A general interpolation function - S.Lord 12 MAY 88
A1(B1), given absissa B and ordinate values B-array
$=-1$ BI less than entire B-array range
+2 B array contains adjacent equal elements
+3 B array is not monotonic

```
DO 10 J=2,N
    I=J-1
    IF(B(I).EQ.B(J))THEN
                            IERR=2
                            RETURN
            ENDIF
            IF(B(I).GT.B(J)) THEN
                    IERR=3
                    RETURN
                    ENDIF
        IF (B (J).GE.B1)THEN
```

```
                                    A1ATB1=A(I) +(A(J)-A(I))*(BI-B(I))/(B(J)-B(I))
                                    RETURN
                                    ENDIF
10
    CONTINUE
    PRINT*,' A1TOB1 1'
    STOP
C
C Treat decending B-array case second:
C
    ELSE
        IF (BI.LT.B(N)) THEN
        IERR=-1
        RETURN
        ENDIF
        IF(BI.GT.B(1)) THEN
        IERR=1
        RETURN
        ENDIF
    C
        DO 20 J=2,N
        I=J-1
            IF(B(I).EQ.B(J))THEN
            IERR=2
            RETURN
                ENDIF
                IF (B (I) .LT.B (J)) THEN
                    IERR=3
                    RETURN
                    ENDIF
        IF (B (J) :LE.BI) THEN
        A1ATB1=A(I) +(A(J)-A(I))*(BI-B(I))/(B(J)-B(I))
        RETURN
        ENDIF
    20
        CONTINUE
        PRINT*,' A1TOB1 2'
        STOP
    ENDIF
    END
    FUNCTION WLORWN(ARG)
C****************************************************************
C WI - wavelength, WN - wave number. Converts one to the other.
C ****************************************************************
C This calculates wavelength (lambda
C in microns) at a wave number (cm^-1).
C Conversely it calculates a wave number (cm^-1)
C at a wave length (microns)
C It's a little silly to do in
C a function, but it trades speed for clarity.
C
WLORWN=1E4/ARG
RETURN
```

END
FUNCTION DLORDN(DELARG,ARG)

$$
C
$$

$$
\begin{aligned}
& C \\
& C
\end{aligned}
$$

C and are the same type unit
C **) (microns) at delta sigma ($\mathrm{cm}^{\wedge}-1$).
C Conversely it calculates delta sigma
C ($\mathrm{cm}^{\wedge}-1$) at delta lambda (microns)
C Formally, the sign should be reversed, but
C this is not usually desired.

DLORDN $=1 E 4$ *DELARG/(ARG*ARG) RETURN
END
FUNCTION IFATWN (WN, IE)

C Finds the index in the $F=$ Fine array
C that represents the largest wave number
C that is less than WN.
C If WN is less than the first wave number Fl , $\mathrm{IE}=-1$
C ***)
C If $W N$ is greater than the last $W N, I E=1$. Else, $I E=0$. N.B. we have
C set up the fine array in decreasing wave number, $F D$ is negative.
COMMON /FVECT/ F1, F2, FD, NF
IFATWN $=$ NINT ($(W N-F 1) / F D)+1$
IE $=0$
IF (IFATWN.LT.1) IE=-1
IF (IFATWN.GT.NF) IE=1
RETURN
END
SUBROUTINE GETSET(IER)
C *****************************
C Uses a file listing the number of lines per integer wavenumber,

COMMON /LIMIT/NFMAX, NRES, BOTL,TOPL,ISLITS, IWINGS, IPLOTN

COMMON /SKIPS/ISKIPWN(12500), ISKIPSUM(12500), ISKIPMAX (12500)
C
Cd print*,'ext 21 read21 ',wnext2,wnext1,wnr2,wnr1
IER=0
$\operatorname{OPEN}(1$, FILE='/work/cgs/atran/skipa.dat', STATUS='OLD', ERR=1232)
C, READONLY)
IBEG $=10000 . / \mathrm{TOPL}+.0001$
IEND $=10000 . /$ BOTL +.0001
PRINT*,' WNR1 WNR2 ',WNR1,WNR2
PRINT*,' TOPL,BOTL, IBEG, IEND ',TOPL, BOTL, IBEG, IEND
IF (IBEG.GT.WNR2.OR.IEND.LT.WNR1) THEN
WLR1 =WLORWN (WNR1)
WLR2 =WLORWN (WNR2)
PRINT*,' AFCRL file''s available wavelength range:'
PRINT10, BOTL, TOPL, WLR1, WLR2

1
2
3
FORMAT(' ',F7.2,' - ',F7.2,/
, ' does not include desired span:'
F7.2,' - ', F7.2,' which is the span,',/,
' extended to include nearby line wings')
CLOSE (1)
IER=1
RETURN
ENDIF

IFLAG=0
PRINT*,' BEFORE LOOP WNR2,1 ',WNR2,WNR1
DO 1 I=IBEG, IEND
READ (1, *, END=21, ERR=20) LPN, NTOT
C
PRINT*,' IN LOOP, WN, LPN, NTOT= ', I,LPN, NTOT ISKIPWN (I) $=\mathrm{LPN}$
IF (IFLAG.EQ.0) THEN
IF (I+1.GT . WNR2) THEN
IFLAG=1
PRINT*', Flags up, we''re rolling! '
IRECA $=$ NTOT
ENDIF
ELSEIF (IFLAG.EQ.1)THEN
IF (I.GT.WNRI) THEN
IRECZ $=$ NTOT
IFLAG=2
ENDIF
ELSEIF (IFLAG.EQ.2) THEN
IF (I.GT.WNR1+IWINGS) GO TO 15
ENDIF
CONTINUE
PRINT*,' Warning,
1 ,'lacking information for line wings shortward of ', 1 IBOTL,' micrometers'
GOTO15
20 CONTINUE
PRINT*,' Error in skipa.dat, WN, LPN,NTOT= ', I, LPN, NTOT
IER=1
RETURN

21 PRINT*,' Premature end of file in SKIPA File.'
IER=1
RETURN
15 CONTINUE
IF (IRECZ.EQ. IRECA) GOTO21
C PRINT*,' IRECA, IRECZ ',IRECA, IRECZ CLOSE (1)
C The arrays ISKIPSUM and ISKIPMAX count
C the max possible line with wings
C IWINGS wave numbers out from the center
C that may overlap at a wavenumber
C
IWNBEG=WNR2
IWNEND=WNR1
c
PRINT*,' start and stop wn on getset... ', IWNBEG, IWNEND DO $I=I W N B E G$, IWNEND
$J=$ MAX (I - JWINGS, 1)
K=MIN (I+JWINGS, 12500)
ISKIPSUM (I) $=0$
DO $\mathrm{L}=\mathrm{J}, \mathrm{K}$
ISKIPSUM (I) =ISKIPSUM (I) +ISKIPWN (L)
ENDDO
ENDDO
DO $I=I W N B E G$, IWNEND
J=MAX (I-JWINGS, 1)
K=MIN (I+JWINGS, 12500)
ISKIPMAX (I) $=1$
DO $L=J, K$
IF (ISKIPSUM (L) . GT. ISKIPMAX (I)) ISKIPMAX (I) =ISKIPSUM (L) ENDDO
ENDDO
JBEG=MAX (IWNBEG-IWINGS, 1)
KEND=MIN (IWNEND+IWINGS, 12500)
c
c
c
C
c
PRINT*,' WN WAVELENGTH ISKIPWN ISKIPSUM SKIPMAK
PRINT*,
DO I=JBEG, KEND
WAVELEN $=10000$./I
WRITE (*, 4444) I, WAVELEN, ISKIPWN(I), ISKIPSUM (I), ISKIPMAX (I)
c FORMAT(1X,I7,1X,F10.3,1X,3(I6, 2X))

ENDDO

OPEN(I, FILE='/work/cgs/atran/afgl.bin', STATUS='OLD',
1 FORM='UNFORMATTED',
2 iostat=ierrs)
if (ierrs.ne.0) gotol234
WRITE (*,' (''Reading through database'
1,'to this wavelength......'')')
DO $I=1$, IRECA
READ (1)
ENDDO
PRINT*,' '
PRINT*', Data file advanced'
C
READ (1) wn, st, wd, ep, n

| C | WL=10000./WN |
| :---: | :---: |
| C | PRINT*,' WL WN ',WL, WN |
| | RETURN |
| 1232 | PRINT*,' Can''t fine skipa.dat' |
| | STOP |
| 1234 | PRINT*,' Can''t find afgl.bin' |
| | print*,'ierrs= ',ierrs |
| | STOP |
| | END |
| | SUBROUTINE INTEG |
| C ******* | ** |
| C Integrates Lorentz line shapes into the fine array
 | |
| | |
| C Reads the lines from the AFCRL database one by one, and, for each C level of the atmosphere, add the lines into the Fine array. The | |
| | are all Lorentzian. |
| C | |
| C statistical counters.... IWEAK C | |
| | |
| C IWEAK | The line at line cntr |
| ${ }_{C}^{C}$ IDELIN (for gamma etc. in this layer) is too weak | |
| | |
| C (fn. has FWHP less than . 5 FD ; is inte | |
| C IDELOUT delta fn. out of range (rejected) | |
| C IWIDEIN | IN broad line, in range, (integrated) |
| C IWIDEOU' | UT broad line, out of range, (rejected) |
| CHARACTER*3 MOLE (7) | |
| $\operatorname{INTEGER} \operatorname{IN}(7), \operatorname{INN}(7), \operatorname{IWEAK}(7,300), \operatorname{IDELIN}(7,300)$, | |
| $1 \operatorname{IDELOUT}(7,300), \operatorname{IWIDEOUT}(7,300), \operatorname{IWIDEIN}(7,300)$ | |
| REAL* 8 E | |
| COMMON/D20/D20G | |
| $1 \begin{aligned} & \text { C } \\ & \\ & \\ & \\ & \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \\ & \mathrm{C} \\ & \mathrm{C}\end{aligned}$ | COMMON /LIMIT/NFMAX, NRES, BOTL, TOPL, ISLITS, IWINGS, IPLOTN |
| | , RESRB, AC, JWINGS |
| | COMMON /FARRA/F(1000000) |
| | COMMON /PVECT/P1, P2, PD, NP, NINST, IPLTCNT |
| | COMMON /FVECT/F1, F2, FD, NF |
| | COMMON /WREAD/ IRECA, IRECZ |
| | COMMON /RANGE/WL1I, WL2I, DWLI, WNEXT1, WNEXT2,WNR1,WNR2,WLEXT1 |
| 1 , WLEXT2,WLLINE, IZSKIP | |
| 1 COMMON /WGAS/ WGASES $(7,2), \operatorname{PALL}(3,300), \operatorname{TALL}(3,300)$ | |
| | |
| | COMMON /SCALE/SSCALE (3,300), GSCALE $(3,300)$ |
| | COMMON /SKIPS/ISKIPWN(12500), ISKIPSUM (12500), ISKIPMAX (12500) |
| 1 | COMMON /STRONG/SLINES (80), ISPEC(80), SEW (80), ISTRONG |
| | , IPOINT, STRENGTH |
| | DATA MOLE/'H2O','CO2',' O3',' N2O',' CO','CH4',' O2'/ |
| | DATA IN/1,2,3,4*2/. |
| 1 | INN/1, 2, 3, 2, 2, 3, 2/, PI/3.14159265/, PII/0.318309886/ |
| c op | open(81, file='deb.', status='new') |
| C | |
| C Clear sta | statistics counters |

```
C
C
    IZIP=0
C
    IZAP=0
    WN1I=10000./WL1I
    WN2I=10000./WL2I
    IF (DWLI.GT.0) WNINST=DLORDN (DWLI,WLEXTI)
    IF(DWLI.EQ.O)WNINST=NRES*FD
    IF (IPLTCNT.NE.0) THEN
    PRINT**,' CLEARING STAT COUNTERS...'
        DO I=1,300
                DO J=1,7
                IWEAK (J,I) =0
                IDELIN (J,I) =0
                IWIDEOUT (J,I) =0
                IWIDEIN (J,I) =0
                IDELOUT (J,I) =0
        ENDDO
        ENDDO
    PRINT*,' STAT COUNTERS CLEAR'
    PRINT*,' Reinitializing Arrays...'
        DO I=1,NF
        F(I) =0
        ENDDO
    PRINT*,' FINE ARRAY CLEAR'
    ENDIF
C
    IATMOK=0
    IACCEPT=0
    IREJECT=0
    HALFF=FD/2.
    CONST=-LOG (1-AC) *PI/LAYER
C
C Outermost loop for the lines
C
Cd PRINT*,' Beginning read-in loop...'
C
                            ITOTL=IRECZ - IRECA+1
    DO I I=IRECA,IRECZ
            ITELL=I- IRECA +1
        IF (MOD (ITELL, 500).EQ.0) THEN
            WRITE (*, 5555) ITELL, ITOTL
            FORMAT(1X,I8,' out of ',I8,' lines processed.')
        ENDIF
    READ (1) WNO, SO, GAMMAO, E, ISP, XN
        if (iii.eq.141685)then
        print*,' got it '
        go to 1
        endif
    IF(WNO.GT.1003.6)PRINT*, ' IN INTEG WNO= ', WNO
    SO=SO*1E+20
C
C Check to see if we are
```

```
C starting or stopping our read within the range
C
                            IF (I.EQ.IRECA. AND.WNO.GT.WNEXT2) THEN
                        PRINT*,' WARNING '
            1 ,'- Starting read inside range, WNO, WNEXT2 ',
        I WNO,WNEXT2
            ENDIF
                            IF (I.EQ.IRECZ.AND.WNO.LT.WNEXT1) THEN
                            PRINT*,' WARNING - Ending read inside range, WNO, WNEXT1 ',
                    WNO, WNEXT1
                        ENDIF
C
C Lines not in the
C F array interval are easily dismissed if they are too
C narrow, set a flag. Remember WNEXT1 > WNEXT2
C
    IF (WNO.LE.WNEXT1.AND.WNO.GE.WNEXT2) THEN
    INTERV=1
    ELSE
    INTERV=0
    ENDIF
                            WRITE (*,1111) INTERV
Cd
1111
C
C Check to see if we are out of the range
C of WNR1 WNR2 necessary for the integ.
C
    IF (WNO . LT.WNR2) THEN
                                    IREJECT=IREJECT+1
                                    GOTO1
    ENDIF
C
C Check to see if we have passed the necessary range
C
    IF(WNO.GT.WNR1)GOTO 9999
C
C Check if it is not H2O and we
C are modeling the "tank." (if so, reject)
C
    IF (ITANK.EQ.1)THEN
    IF(ISP.NE.1) THEN
    IREJECT=IREJECT+1
    GO TO 1
    ENDIF
    ENDIF
C
Cd
Cd
Cd
                                    IACCEPT=IACCEPT+1
                                    PRINT*,' '
                                    PRINT*,' '
PRINT*,' Accepting No. ',IACCEPT
    LEVS=LAYER
    K=IN(ISP)
    KK=INN(ISP)
```

```
C
C MAXLPN is the maximum
C number of lines that can overlap at this wave number
C XLIM is a constant to use in
C comparison with line center strengths, to
C determine if a line is significant.
C
IND=WNO
MAXLPN=ISKIPMAX (IND)
IF (MAXLPN.EQ.0)THEN
PRINT*,' ???? IND, ISKIPMAX(IND) ',IND,ISKIPMAX(IND)
MAXLPN=1
ENDIF
                                    XLIM=CONST/MAXLPN
C
C Middle loop for the atmospheric levels
C
    DO 100 LEV=1,LEVS
    IF (LEV.EQ.LEVS) INDEX=2
    IF (LEV.LT.LEVS.OR.LEVS.EQ.1) INDEX=1
W=WGASES (ISP, INDEX)
S=SSCALE (K,LEV) * SSCAL1 (WNO, E, TALL (K, LEV)) *SO
    IF (ITANK.EQ.1) THEN
                                    IF (D2OG.GT.O.AND.ABS (WNO-48.75267).LT. .0003)THEN
                                    W=D2OG
                                    S=S*1E7
                                    PRINT*,' (Picked up the D2O line!)'
                                    ENDIF
            ENDIF
C
C X=SSCALI (WNO, E,TALL (K,LEV))
c WRITE (81,*)' K LEV TALL(K,LEV) P',K,LEV,TALL (K, LEV), PALL (K,LEV)
c WRITE (81,*)' X,SS,SG,SO,S',X,SSCALE(K, LEV),GSCALE (K,LEV), SO,S
c WRITE (81,*)' ISP,LEV,WG,LEVS',ISP,IEV,WGASES (ISP,INDEX), LEVS
C
GAMMA=GAMMAO * PALL (K,LEV) * (296./TALL (K,LEV)) **XN
TERM=S*W*GAMMA/XLIM-GAMMA*GAMMA
TERM1 = S*W*GAMMA - GAMMA*GAMMA
C
C IF TERM < 0 it means the line
C center is below the threshold for significance
C
IF(TERM.LT.0) THEN
    IWEAK (ISP,LEV) =IWEAK (ISP, LEV) +1
    GOTO 100
ENDIF
C
\(C\) Determine if the equivalent width is sufficient to include the line \(C\) in the list to mark.
C
IF (LEV . EQ . 1. AND. WNO . GE . WN2I. AND . WNO . LE .
```

1 WN1I) THEN

$$
E W=S * W * L A Y E R / W N I N S T
$$

IF (EW. GT . STRENGTH) THEN IF (IPOINT . GE . ISTRONG) THEN
C
C List is full... we see if we can bump one of lesser lines C

DO IS $=1$, ISTRONG
IF (SEW (IS) . LT . EW) THEN
SLINES (IS) =WNO
SEW (IS) =EW
ISPEC(IS) =ISP
GO TO 1777
ENDIF
ENDDO
ELSE
IPOINT=IPOINT+1
SLINES (IPOINT) =WNO
SEW (IPOINT) = EW
ISPEC (IPOINT) $=I S P$
ENDIF
ENDIF ENDIF

C

C DELSIG is the number
C of wavenumbers beyond which the line becomes weak C enough to ignore.
C
1777 DELSIG=SQRT (TERM)
C IF (TERM1.LE.O)GO TO 1778
C DELSIG1 = SQRT (TERM1)
C
C Reality check \#1... If this bell rings,
C we need to increase the value of
C IWINGS
C IF (DELSIG1.GT.1)WRITE (55,1755) WNO, MOLE (ISP) , DELSIG1
1755
FORMAT (1X, F11.5, 3x, A3, 3x, F8.2)
Cd
Cd
Cd
Cd
Cd
156

WLO = WLORWN (WNO)
if (iaccept.eq.15)then
print*,' so,gamma0 e s gamma w ',s0,gamma0,e,s,gamma, w endif
write (*, 156) WLEXT1, WLEXT2, WLO, WNO, F1, FD, TERM, NF

FD'
TERM
NF', /, 7 (F9 . $4,1 \mathrm{X}$) I6)

C
C See if it's a delta fn. within the $W N$ range...
C
1778 IF (2*DELSIG.LT.FD.AND.INTERV.EQ.1)THEN INF $=$ NINT $((F I-W N O) / F D)+1$

IF (INF.GE. I. AND. INF.LE.NF) THEN

C

PRINT*,' Reality check 2 failed... center is less than limit',
PRINT*,' RATHER BROAD DEL FN, 2*G, 2*DEL, FD ', 2*GAMMA, 2*DELSIG, FD ENDIF
CEN=S*W/GAMMA
IF (CEN. LT .XLIM) THEN
1 ' Center, limit ', cen, xlim ENDIF
YMEAN $=.5 / \mathrm{PI} *(C E N+X L I M)$
YAVE $=$ YMEAN $* 2 *$ DELSIG/FD
PRINT*,' MIN DEL INT INTO ',INF

Cd
157
Cd

Cd

Cd
Cd
1599
$F($ INF $)=F($ INF $)+Y A V E$

ELSE

WRITE (*, 157) INF
FORMAT(1X,'IDELIN TROUBLE, INF',/,1X,I6)

ENDIF

PRINT*,' TAKEN IDELIN'
IDELIN (ISP, LEV) =IDELIN (ISP, LEV) +1
GO TO 100
ELSEIF (2*DELSIG.LT.FD.AND.INTERV.EQ.0) THEN
PRINT*,' TOO FAR MINIDEL'
IDELOUT (ISP, LEV) =IDELOUT (ISP, LEV) +1
GO TO 100
ENDIF
PRINT*,' IDELOUT NOT THE CASE'

1 WRITE (*, 1599) FD, ZD, AWAY1, FDTOT FORMAT (' FD ZD AWAY1 FDTOT , /, 4(F9.4,1X))
C
C We set up our F array integration
C range, and make sure the ends don't
C exceed the F array extent.
c

> Z1=WNO +DELSIG

Z2=WNO-DELSIG
C
C I1 and I2 are the indices of the F array between which the line has C significant extinction.

$$
\begin{aligned}
& I 1=\operatorname{NINT}((\mathrm{F} 1-\mathrm{Z} 1) / \mathrm{FD})+1 \\
& \mathrm{I} 2=\operatorname{NINT}((\mathrm{F} 1-\mathrm{Z} 2) / \mathrm{FD})+1
\end{aligned}
$$

C

IF (I1.GT.NF.OR.I2.LT.1)THEN
IWIDEOUT (ISP, LEV) $=$ IWIDEOUT (ISP, LEV) +1
GO TO 100
ENDIF
IWIDEIN (ISP, LEV) $=$ IWIDEIN $($ ISP, LEV $)+1$
IF(I1.LT.1) I1=1
IF (I2.GT.NF) I2 $=\mathrm{NF}$
Cd PRINT*,' GAMMA ',GAMMA

IF (WLEXT2 .LT. 100) THEN

| $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | IF (IZAP.EQ.0) PRINT*', LORENTZ' |
| :---: | :---: |
| | IZAP $=1$ |
| | CON $=$ S*W*GAMMA/PI |
| | GAMMA $2=$ GAMMA * 2 |
| | WNOF1FD $=$ WNO-F1-FD |
| | DO INOW=I1, I2 |
| | DEL=WNOF1FD+INOW*FD |
| | $F($ INOW $)=F($ INOW $)+$ CON $/($ GAMMA $2+$ DEL*DEL $)$ |
| | ENDDO |
| | ELSE |
| C | IF(IZIP.EQ.0) PRINT*', KINETIC' |
| C | IZIP=1 |
| | CON=S*W* 4 *WN0*GAMMA/PI |
| | GAMMA $42=4 *$ GAMMA **2 |
| | WNO2 = WNO *WNO |
| | F1FD=F1+FD |
| | DO INOW=I1, I2 |
| | SIG=F1FD-INOW*FD |
| | SIG2=SIG*SIG |
| | DIF=WNO2-SIG2 |
| | $F($ INOW $)=\mathrm{F}$ (INOW) +SIG*CON/ (DIF*DIF+GAMMA42*SIG2) |
| | ENDDO |
| | ENDIF |
| Cd | DO 109 II= IFBEG-1, IFEND+1 |
| Cd109 | PRINT*, II, F(II) |
| 100 | CONTINUE |
| 1 | CONTINUE |
| 9999 | PRINT*, IACCEPT,' CONSIDERED, ',IREJECT,' REJECTED' |
| | PRINT*,' OF THOSE CONSIDERED.....' |
| | PRINT*,' ' |
| | PRINT*,' IWEAK |
| | $1 \mathrm{C}^{\prime} 1(\mathrm{H} 2 \mathrm{O}) 2(\mathrm{CO} 2) 3(\mathrm{O} 3) 4(\mathrm{~N} 2 \mathrm{O}) 5(\mathrm{CO}) 6(\mathrm{CH} 4) 7(\mathrm{O} 2)$ |
| | PRINT*,' Weak line, reject' |
| | PRINT 994 |
| 994 | FORMAT (1X, 70 ('-')) |
| | DO $1042 \mathrm{~J}=1$, LAYER |
| 1042 | PRINT 77, J, (IWEAK (ISP, J), ISP=1, 7) |
| | PRINT*,' ' |
| | PRINT*,' IDELIN 1 (H 2 O) $2(\mathrm{CO} 2) 3$ (O3) $4(\mathrm{~N} 2 \mathrm{O}) ~ 5(\mathrm{CO}) 6(\mathrm{CH} 4) 7(\mathrm{O} 2)$ |
| | PRINT*,' Narrow line in range, accept' |
| | PRINT 99 |
| 99 | FORMAT (1X, 70 (${ }^{\text {- }}$ ')) |
| | DO $1002 \mathrm{~J}=1$, LAYER |
| 1002 | PRINT 77, J, (IDELIN(ISP, J), ISP=1,7) |
| | PRINT*,' , |
| | PRINT*, |
| | $1{ }^{\prime}$ IDELOUT $1(\mathrm{H} 2 \mathrm{O}) 2(\mathrm{CO} 2) 3(\mathrm{O} 3) 4(\mathrm{~N} 2 \mathrm{O}) ~ 5(\mathrm{CO}) 6(\mathrm{CH} 4) 7(\mathrm{O} 2)$ |
| | PRINT*,' Narrow line out range, reject' |
| | PRINT 99 |
| | DO $1003 \mathrm{~J}=1$, LA A (${ }^{\text {a }}$ |
| 1003 | PRINT 77, J, (IDELOUT (ISP, J), ISP=1,7) |

```
    PRINT*,',
    PRINT*,
    1' IWIDEOUT 1(H2O)2(CO2) 3(O3) 4(N2O) 5(CO) 6(CH4)7(O2)
    PRINT*,' Broad line out range, reject'
    PRINT }9
    DO 1004 J=1,LAYER
1004 PRINT 77, J,(IWIDEOUT(ISP,J),ISP=1,7)
    PRINT*,' '
    PRINT*,
    1, IWIDEIN 1(H2O)2(CO2)3(O3) 4(N2O) 5(CO) 6(CH4)7(O2)
    PRINT*,' Broad line in range, accept'
    PRINT }9
    DO 1005 J=1,LAYER
1005 PRINT 77, J,(IWIDEIN(ISP,J),ISP=1,7)
7 7
    FORMAT(' LYR.',I2,7(I6))
    CLOSE (1)
    RETURN
    END
FUNCTION SSCALI (WNO, E,T)
```



``` \(C\) wave number, energy, and Temperature dependent
```



```
REAL* 8 E
WN695=WN0/0.695
TERM1 \(=\operatorname{EXP}(-E *(296-T) /(0.694927 * 296 * T))\)
TERM2 \(=(1-\operatorname{EXP}(-\mathrm{WN} 695 / \mathrm{T}))\)
TERM3 \(=(1-\operatorname{EXP}(-\) WN695/296) \()\)
SSCAL1 = TERM1 * TERM2 /TERM3
RETURN
END
SUBROUTINE EXPO
```


C


```
C Converts Opacities to Transmissions en situ by exponentiating
```



```
COMMON /FARRA/F (1000000)
COMMON /FVECT/F1,F2,FD,NF
PRINT*,' Converting opacity to transmittance...'
DO \(I=1, N F\)
IF ( F (I) . LT. 0) THEN
PRINT*,' NEGATIVE OPACITY! \(F(I), I\), \(F(I), I\)
STOP
ELSEIF (F (I).LT.10)THEN
\(F(I)=\operatorname{EXP}(-F(I))\)
ELSE
\(F(I)=0\)
ENDIF
ENDDO
```

```
RETURN
END
SUBROUTINE SMEAR
C***********************************************
C Smooths the "fine" array by the selected instrument
C function, and puts it into the plot array C***********************************************
REAL HWHMS (4)
COMMON /PARRA/P (20000), IPTYPE,
1 /PVECT/P1, P2, PD,NP,NINST, IPLTCNT
COMMON /FARRA/F (1000000), /FVECT/F1, F2, FD, NF
COMMON /RANGE/WLII,WL2I,DWLI, WNEXT1,WNEXT2,WNR1, WNR2, WLEXT1
1, WLEXT2,WLLINE,IZSKIP
C
\(C\) HWHMS are the number of half
C widths at half powers from the center of a
C particular weighting function which need computing. The
C functions are indexed
C 1=Triangle, \(2=\) Gaussian, \(3=\) Sinc, \(4=\) Box. The Sinc function
\(C\) is the broadest.
C
DATA HWHMS/2.1,3.,8.1,1.1/
C
\(C\) We determine the range of indices in
\(C\) the fine array over which to apply
\(C\) the smoothing function. Variables are defined:
C
C DWLI
C FWHM
C
C HWHM
C DLAM1
C
C N
C
C
C I
C PL
C ICENTF
C
C IF1 to IF2
C IFS
C WL
C DWL
C
C PINT
the instrumental resolution
(full width at half maximum)
half width at half maximum
the spacing of the \(F\) array IN WVLGTH (micr)
at the low wl end
the number of indices in the \(F\)
array needed to contain half
of the extent of the selected weighting function
indexes the element of the \(P\) array being computed
the wavelength of this element (microns)
the index of
the nearest \(F\) array element corresponding to PL
the index range to smooth the \(F\) array to get \(P(I)\)
the index of an \(F\) array value
the wavelength of this \(F\) array element
how far in wavelength this
element is from the \(P(I)\) 's wl
the integrated weighted \(P\) array value
IF (DWLI.EQ.0) RETURN
FWHM=DWLI
HWHM \(=0.5 *\) DWLI
DLAM1=DLORDN (FD, F1)
```

```
    N=HWHMS (NINST) *HWHM/DLAM1 + . 5
        IF (N.LT.2)THEN
    PRINT*,' Only one fine array point for each plotted point!'
        ENDIF
C
    PRINT*,' Smoothing the Fine array.....'
    ITASK=2*N*NP/1000
    ITCNT=0
        DO I=1,NP
        PL=P1+(I-1)*PD
        ICENTF=(F1-WLORWN (PL))/FD+1.5
        IFI=ICENTF-N
        IF2=ICENTF+N
        IF(IF1.LT.1 )IFl=1
        IF(IF2.GT.NF)IF2=NF
            IF (IF2.GT.NF.OR.IF1.LT.1) THEN
                PRINT*,' CAN''T SMOOTH TO OBTAIN PLOT INDEX ',I,
1 , AT WAVELENGTH ',PL STOP
            ENDIF
    PINT=0
    WT=0
            DO IFS=IF1,IF2
                ITCNT=ITCNT+1
                    IF (ITASK.GT. 50 . .AND .MOD (ITCNT, 50000) .EQ.0) THEN
                ITA=ITCNT/1000
                WRITE(*, 3535)ITA,ITASK
                FORMAT(1X,I7,' K out of ',I7,' K smoothing',
            I
                    , operations done.')
                    ENDIF
                WL=WLORWN(F1-(IFS-1)*FD)
                DWL=PL-WL
                WTI=DINST (DWL, FWHM, NINST)
                WT=WT+WTI
                PINT=PINT+WTI*F(IFS)
            ENDDO
            IF (WT .NE .0) THEN
                P(I) =PINT/WT
            ELSE
                P(I) =0
            ENDIF
        CONTINUE
        ENDDO
C
\(C\) Compute the total transmission through the band for both arrays C
```

```
SUMP=0
```

SUMP=0
DO IP=1,NP
DO IP=1,NP
SUMP=SUMP+P(IP)
SUMP=SUMP+P(IP)
ENDDO
ENDDO
SUMP=SUMP /NP
SUMP=SUMP /NP
SUMF=0
SUMF=0
DO IF=1,NF

```
```

 SUMF=SUMF+F (IF)
 ENDDO
 SUMF=SUMF/NF
PRINT*, 'F TRANS, P TRANS: ',SUMF,SUMP
RETURN
END
SUBROUTINE SINCO(FWHM)
C*******************
C a constant C so that we may smooth the data with a SINC
C function possessing the correct full width at half maximum (FWHM)
C I.E., SIN(C * HWHM) / (C * HWHM) = 0.5, where HWHM = 0.5 FWHM.
C To find C we use the method of Successive Approximations.
C******************************
COMMON /SINCC/C
HWHM=0.5* FWHM
C=HWHM
DO I=1,200
C=2./HWHM * SIN (C*HWHM)
ENDDO
HALF=SIN (C*HWHM) / (C*HWHM)
IF (ABS (0.5-HALF).GT. .01) THEN
PRINT*,' SINC INITIALIZATION FAILED, HALF= ',HALF
STOP
ENDIF
RETURN
END
FUNCTION DINST (DELWL, FWHM, NINST)

```

\section*{C*************************************************}
```

C Evaluates one of four (NINST=1 to 4) instrumental functions at C a wavelength displacement DELWL from the function center, with the C instrument function completely defined by NINST and FWHM
C If a SINC function is used (NINST=3) then SINCO must be call prior C to using this function.
C NINST=1 Triangle, 2 Gaussian, 3 Sinc, 4 Rectangle
C***
COMMON /SINCC/C
GO TO (10, 20, 30,40) NINST
PRINT*,' INSTRUMENT FUNCTION UNDEFINED', NINST
STOP
C
C TRIANGLE (NINST=1)
C
10 DINST = - ABS (DELWL) $/$ FWHM +1
IF(DINST.LT.0)DINST=0
RETURN
C

```
```

C GAUSSIAN (NINST=2)
C
20 EXPON=0.693* (DELWL*2/FWHM) **2
IF (EXPON.LT. 10) THEN
DINST=EXP(-EXPON)
ELSE
DINST=0
ENDIF
RETURN
C
C SINC (NINST=3)
C
30 IF(DELWL.NE.0)THEN
DINST=SIN (C*DELWL)/(C*DELWL)
ELSE
DINST=1
ENDIF
RETURN
C
C RECTANGLE (NINST=4)
C
40 IF (ABS (DELWL).LT.FWHM/2 .) THEN
DINST=1
ELSE
DINST=0
ENDIF
RETURN
END
SUBROUTINE PLOT
C
C**
C Sends P array to Mongo
C**
C
CHARACTER* 35 UNIT (2) , AUNIT, PNAME (9) * 11, TEN (3) * 10
$\operatorname{INTEGER} \operatorname{MTERM}(4), \operatorname{MPLOC}(4,4), \operatorname{IDOTS}(3,7)$
REAL DOTLOC (3)
COMMON /TERM/ITERM
COMMON /PARRA/P (20000), IPTYPE
COMMON /PVECT/P1, P2, PD, NP,NINST, IPLTCNT
COMMON /FARRA/F (1000000)
COMMON /FVECT/F1,F2,FD,NF
COMMON /RANGE/WLII, WL2I, DWLI, WNEXT1, WNEXT2, WNR1, WNR2 , WLEXT1
1 , WLEXT2,WLLINE, IZSKIP
'COMMON /STRONG/SLINES (80), ISPEC (80), SEW (80), ISTRONG
1 , IPOINT, STRENGTH
LOGICAL EX
DATA MTERM/3,11,7,14/, MPLOC/100,750,100,700, 40,375,60,350,
$148,453,78,379,40,375,40,350 /$
DATA PNAME/'parray.dat1'
1 'parray.dat2', 'parray.dat3', 'parray.dat4',
1 'parray.dat5', 'parray.dat6','parray.dat7', 'parray.dat8',

```
'parray.dat9'/
DATA UNIT/'\\\\rWavelength ( \\gmm )', 1 ' \(\backslash \backslash \backslash\) rWavenumber ( cm\\u- \(\backslash \backslash u 1\) )'/
DATA DOTLOC/-.08,-.06, -.04/
DATA IDOTS \(/ 0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1 /\) IPLTCNT=IPLTCNT +1
IF (IPLTCNT.EQ.1) THEN
DO \(I I=1,9\)
INQUIRE (FILE=PNAME (II) , EXIST=EX)
IF (EX.EQ. .TRUE.) THEN
OPEN (11, FILE= PNAME (II) , STATUS='OLD')
CLOSE (11, STATUS='DELETE')
ENDIF
ENDDO
ENDIF
OPEN (10, FILE= PNAME (IPLTCNT) , STATUS='NEW')
IF (DWLI.EQ.0) THEN
DO JJ \(=1, N F, I Z S K I P\)
\(\mathrm{WL}=\mathrm{F} 1-(\mathrm{JJ}-1)\) * FD
IF(IPTYPE.EQ.1) WL=10000./WL
WRITE (10, *)II, WL, F(JJ)
ENDDO
ELSE
\[
\text { DO } I I=1, N P
\]
\(W L=P 1+(I I-1) * P D\)
IF (IPTYPE.EQ.2) WL=10000./WL
WRITE (10, *) II, WL, P (II)
ENDDO
ENDIF
CLOSE (10)
IF (IPLTCNT. EQ.1) THEN
INQUIRE (FILE='p.plo', EXIST=EX)
IF (EX.EQ. .TRUE.) THEN
\(\operatorname{OPEN}(11\), FILE='p.plo', STATUS='OLD')
CLOSE (11, STATUS='DELETE')
ENDIF
OPEN (20, FILE='p.plo', STATUS='NEW')
AUNIT=UNIT (IPTYPE)
YUP=1. 2
IF (IPTYPE.EQ.2)THEN
P1 \(=10000 /\) WL2 2 P2 \(=10000 /\) WL1I P11=P1-.1* (P2-P1) \(\mathrm{P} 22=\mathrm{P} 2+\). 1* \(^{*}(\mathrm{P} 2-\mathrm{P} 1)\) STARTWL=WL2I WRITE (TEN (1) , 1011) STARTWL FORMAT (F10.4) STOPWL=WL1I
WRITE (TEN (3) , 1011) STOPWL
CENTERWN \(=.5 *(\) P11 + P22 \()\)
CENTERWL \(=10000 /\) CENTERWN
WRITE (TEN (2) , 1011) CENTERWL
\(\operatorname{WRITE}(20,131)\) MTERM (ITERM) , (MPLOC (I, ITERM) , I=1, 4),

\begin{tabular}{|c|c|c|}
\hline 6 & 'YLAB \\\\rTransmittance' & \\
\hline 7 & 'XLAB ',A35 & . \(/ 1\), \\
\hline 8 & 'DATA parray.dati' & .1, \\
\hline 9 & 'YCOL 3' & , /, \\
\hline 1 & 'XCOL 2' & ,/, \\
\hline 2 & ' CONN') & \\
\hline
\end{tabular}


WLEXT2, WLLINE, IZSKIP
DATA MTERM/3,11, 7,14/,MPLOC/100, 750,100,700, 40,375,60,350,
DATA DOTLOC/11.7,12,12.3/,UP/12.5/,DOWN/11.5/,YLET/10.9/
DATA IDOTS \(/ 0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1 /\)
DATA LINENAM

DATA KEYLOC/.1,.4,.7,1.0,1.3,1.6,1.9/
DATA MKLOC/760,1000,100,760, \(380,600,50,375\), 459, 604,99,452, 380,500,10,375/

DATA TYPES/'Standard','Tank','Special','Std. \(\& H \backslash \backslash d 20\) Adj.'/ DATA FNS/'Triangle','Gaussian','Sinc','Rectangle','None'/
DATA POSY \(/ 20,18,17,16,15,14,13,10,9,8,7,6,5,4,3,5 * 0 /\)
DATA LAB/' ',' Zenith WV','Zenith Ang','L.O.S. WV',
'Atm. Type','Layers','Altitude','Lambda 1','Lambda 2',
'Sampling','Res(FWHM) ','Instr. Fn.','Line Ctr','Num. Pts.',
'Ozone','Time','P(mm Hg)'/
PRINT 11
FORMAT(' Comment for plot (A20)',
1 ' (you may use mongo "\\u'', etc.) (Test): ')
READ 12, COMMT
FORMAT (A20)
PRINT 121, COMMT
FORMAT('\{',A20,'\}')
CALL FDATE (DATER)
WRITE (DATERF, 1212) DATER
FORMAT (A24)
READ (DATERF, 1213) DATERI
FORMAT (24A1)
IF ( (DATERI (5) .eq. 'A'. or.DATERI (5) .eq. \({ }^{\prime} \mathrm{M}^{\prime}\) ) . and.
1 (DATERI (6).eq.' 2 '.or.DATERI (6).eq.' \(\mathbf{a}^{\prime}\) ) . and.
1 (DATERI (6).eq.'p'.or.DATERI (6).eq.'a') .and.
3 DATERI (24).eq.' \(2^{\prime}\) ) then
PRINT*,'
ELSE
PRINT*,' Sorry, software has expired.' STOP ENDIF

CALL TIME (TIMER)
TYPEI=TYPES (IATYPE+1)
FNI =FNS (NINST)
WRITE \((20,20)\) (MKLOC ( \(I\), ITERM), \(I=1,4\) )
```

FORMAT('LOC ',4(I4,1X) ,/,
I
,/'
DO I=1,15
WRITE (20,30) POSY (I) , LAB (I)
FORMAT('RELOC 0',F4.1,/,'PUTL 6

r',A15)

```
ENDDO
```

 WRITE (20,40)
 POSY(1), COMMT, POSY(2),AWV, POSY(3),AZ,
 POSY(4),AWVL,
 POSY(5),TYPEI, POSY(6),IALAY,POSY(7),IALT, POSY(8),P1,
 POSY(9),P2, POSY(10),PD, POSY(11),DWLI, POSY(12),FNI,
 POSY(13),WLLINE, POSY(14),NP, POSY (15), CDOZ
 40 FORMAT (
C COMMT
1 'RELOC 0 ',F4.1,/,'PUTL 6

r',A20 ,/,
C AWV
C AZ
C AWVL
4 'RELOC 1 ',F4.1,/,'PUTL 6

r',F8.1 ,/,
C TYPEI
5 'RELOC 1 ',F4.1,/,'PUTL 6

r',A15 ,/,
C IALAY
6 'RELOC 1 ',F4.1,/,'PUTL 6

r',I3 ,/,
C IALT
7 'RELOC 1 ',F4.1,/,'PUTL 6

r',I5 ,/,
C P1
8 'RELOC 1 ',F4.1,/,'PUTL 6

r',F9.3 ,/,
C P2
9'RELOC 1 ',F4.1,/,'PUTL 6

r',F9.3 ,/,
C PD
9 'RELOC 1 ',F4.1,/,'PUTL 6

r',F9.6 ,/,
C NP
1 'RELOC I ',F4.1,/,'PUTL 6

r',F9.6 ,/,
C FNI
2 'RELOC 1 ',F4.1,/,'PUTL 6

r',A9 ,/,
C WLLINE
3'RELOC 1 ',F4.1,/.'PUTL 6

r',F9.3 ,/,
C NP
4 'RELOC 1 ',F4.1,/,'PUTL 6

r',I7 ,/,
C OZONE
5 'RELOC 1 ',F4.1,/,'PUTL 6

r',1PE8.2)

```

\section*{C TIME and date}
```

WRITE $(20,898)$ DATER
898 FORMAT('RELOC -1 -3'./.'PUTL 6
\1r ',A24)
C Write Line Key, after determining if line was seen.
IF (IATYPE.NE.1.AND.IPOINT.GT.0) THEN
WRITE (20,*)'PTYPE 10 3'
ILI=0
DO 2000 I=1,7
DO J=1,IPOINT
IF(ISPEC(J).EQ.I)GO TO 1000
ENDDO

```
```

GO TO 2000

```
    WRITE ( 20,100 ) KEYLOC (ILI) , UP, KEYLOC (ILI) , DOWN
    FORMAT ('RELOC ',F7.3,','F7.3,/,'DRAW ',F7.3,' ',F7.3)
        WRITE (20,*)'EXP .3'
        DO \(K=1,3\)
            IF (IDOTS (K, I) .EQ. 1) THEN
            WRITE ( 20,200 ) KEYLOC (ILI) , DOTLOC (K)
            FORMAT('RELOC ',F7.3,' , F7.3,/,'DOT')
        ENDIF
        ENDDO
            WRITE (20, 300) KEYLOC (ILI), YLET, LINENAM (I)
300
    ELSEIF (IATYPE.EQ.1) THEN
        \(\operatorname{WRITE}(20,50) \operatorname{POSY}(17)\), LAB (17)
        FORMAT ('RELOC 0 , F4.'1,/,' PUTL \(6 \backslash \backslash \backslash I ', A 15)\)
        WRITE \((20,60)\) POSY (17), TORR
C PRESSURE
60 PRESSURE FORMAT('RELOC 1 , F4.1,/,'PUTL \(6 \backslash \backslash \backslash r^{\prime}, F 7.3\) )
            ENDIF
        WRITE \((20,134)\) (MPLOC (I, ITERM), I=1, 4), P11, P22
134
        FORMAT (
            1 'LOC ', 4 (I4,1X), /,
    2 'LIM ', 2(F13.7,1X),' -.1 1.1')
        RETURN
        END

\section*{APPENDIX B}

\section*{INSTALLING THE PROGRAMS}

Instructions for installing the ATRAN software on UNIX and VMS machines are given. Additionally, three supporting programs are listed. WR.F reads the ASCII HITRAN data base. SKIPA.F determines the number of absorption lines per wave number. GTOLA.F converts MONGO screen display code to hardcopy printing code.

\section*{APPENDIX B INSTALLING THE PROGRAMS}

Note, this software is already installed on some of the NASA/Ames SS Division computers. If you are using GAL, see STARCAT\$DISK: [catalog] HELP_ATMOSPHERE for instructions. If you are using CYGNUS, use/wor \(\bar{k} / d o c / a t r a n . d o c\). The software is also already installed on PAN and CMA.
Installing this software on other UNIX and VMS systems is quite straight forward. It involves 3 steps:

First the user must acquire 6 files: afgl.dat, wr.f, skipa.dat, model.dat, atran.f and laseatran.f. The three programs with the .f extension are UNIX versions. For a VMS system, instead acquire WR.FOR, ATRAN.FOR and LASEATRAN.FOR. Contact the author to acquire these files.

Of these files, only AFGL.DAT is very large. Below is a directory listing. (AFGL.BIN is discussed below.)


The second step is to make the database, afgl.bin. To do this, edit the file wr.f. The directory areas in the two OPEN statements must be modified to reflect where afgl.dat is, and where you would like afgl.bin to reside. Select the appropriate directories in wr.f, compile and run it. This routine will generate afgl.bin in a few minutes. (afgl.dat is not used by the software after afgl.bin has been created. The .bin file is about half the size of the .dat file.)

The last step is different for VMS systems and UNIX systems.
For VMS systems:
Before program atran. for may be compiled, one change must be made. Locate the OPEN statement, which opens the AFGL.DAT file (this is the HITRAN database). Modify the directory to correspond to where AFGL. BIN resides on your system. ATRAN. FOR may then be compiled and linked. The other directory areas used by the program are defined as logical symbols. Some of these must be defined by each user. The following gives commands that may be entered into the users login.com file:
\$!
\(\$!\)
\(\$!\)
```

Where ATRAN.EXE, MODEL.DAT, and SKIPA.DAT reside:
DEFINE/NOLOG ATRANDIR USERSDISK7:[LORD.WV]
(for example)
Next is the user's directory.
This is where the newly created MONGO
plotting control files are put.

```
DEFINE/NOLOG ATRANUSERDIR USER\$DISKyours:[yourdir]
Next is user's area for the array of up to
20000 ASCII X,Y data points.
The program will delete all old versions,
so these files normally do not
pile-up.
        DEFINE/NOLOG ATRANSCRATCHDIR SCRATCH\$DISK:[yourdir]
(for example)
To run ATRAN type "RUN ATRANDIR:Z"
ATRAN will make two files: ATRANUSERDIR:P.PLO and
ATRANSCRATCH\$DISK: PARRAY.DAT
P.PLO in turn, will use PARRAY.DAT to make a plot.

For UNIX Systems:
Check all occurrences within OPEN statements within atran.f for the files afgl.bin, model.dat, and skipa.dat. Edit these to refer to the particular directory where you wish these files to reside. Then compile atran.f. Users may run the program with their pwd (present working directory) set arbitrarily. The data files parray.dat* and the plot file p.plo will be written into that directory. (All previous versions of p.plo and parray.dat* will first be removed by the program.

This completes the installation notes for UNIX and VMS systems.
Another useful program is laseatran.f (or laseatran.for). It will quickly edit a p.plo file to change the MONGO LOCATION commands and MONGO TERM commands to values appropriate for make a hard copy of the plot.

Finally, if the user ever wishes to go to the source, to the unabridged HITRAN database, we show how this is done at the SS Division at NASA/Ames. HITRAN resides on a tape which may be read off the CRAY-YMP computer. The following procedure is used to select a subset of that tape, and output it in ASCII, to provide a database, as we have done. The database we selected is all occurrences of the 7 species indicated in Table~1. The user is
able to select a customized database with the following procedure. One must have a CRAY account to accomplish this.
\#
\# Procedure to read out a portion of the HITRAN database. Written
\# By R. Freedman, 1991.
\# The procedure accesses accounts on the computer
\# columbia, for which passwords are required.
This procedure assumes that you have already created a
\# temporary [scratch]
\# directory \$TMP on your CRAY account. Such a directory holds database \# changes temporarily.
\#
cd \$TMP
\#
\# The following version makes line files for FASCODE2.
\# It uses the new partition
\# functions, the IDs for line lists, and a new binary format.
\# To transfer the output of the procedure to another computer,
use ftp.
\#
We assume that user has a .netrc file active on their account.
\#
ftp columbia << END
cd/csf/ss/sst/freedman/hitran_91
get ../exe/select_newf2 select.e
get ../binary/hitran_91_new_format h91
\#
\# We are getting a table of block-line IDs.
\#
quit
END
cp /u2/sst/freedman/hitran_91/notes/header_102 102
\#
\# Finally, the user must run "select.e"
and answer questions that appear on the screen.
\# These questions will pertain to the subset of the HITRAN lines to be
\# written into the output file.
\#
REMEMBER that the file name for the database is h91
\# - use this name when
\# answering the questions.
\#

PROGRAM WR
C
C This program will read the afgl. dat file and produce the
C afgl.bin file.
C commented lines may be uncommented to check for IEEE violations
C
C integer oldstatus,fpstatus
REAL*8 E
OPEN(1,FILE='afgl.bin', STATUS='NEW',
1 FORM='UNFORMATTED',IOSTAT=IERRS)
IF (IERRS.NE . 0) GOTO10
OPEN ( 2, FILE='afgl.dat', STATUS='OLD')
\(\mathrm{I}=1\)
\(\operatorname{READ}(2,22, \mathrm{END}=20, \mathrm{ERR}=11), \mathrm{I}\), WNO, SO, GAMMAO, E, ISP, XN
FORMAT
1(1X, I7, F13.5, 2X, 1PE12.6, 2X, OPF5.3, 2X, OPF10.4, 2X, I2, 2X, 0PF5.3)
WRITE (1) WNO, SO, GAMMAO, E, ISP, XN
oldstatus = fpstatus (0)
IF (and (oldstatus, 8) . ne.0) THEN
print*, ' inexact occured'
PRINT*, I, WNO, SO, GAMMAO, E, ISP, XN
endif
IF (and (oldstatus, 32) .ne.0) then
print*, 'underflow occured'
PRINT*, I, WNO, SO, GAMMAO, E, ISP, XN
endif
\(I=I+1\)
IF ( (I/1000)*1000.EQ.I) THEN
\(J=I / 1000\)
PRINT*, J,' K out of 349 K'
C
C Actually, total number of lines from .8 to 100000 microns is 349156 C

ENDIF
IF (1.EQ.1) GO TO 1
PRINT*,' OPEN ERROR'
STOP
11 PRINT*,' READ ERROR'
STOP
20
PRINT*,' Normal end... afgl.bin written' end

\section*{PROGRAM SKIPA}

C
C This program reads the hitran database (afgl.bin) file, and
\(C\) counts how many lines there are per wavenumber. It outputs this
C information in a file called LISTA.DAT
\(C\) The current version assumes that the span of wavenumbers in afgl.bin
C runs from 1 to 125000
C
INTEGER A(12500),B(12500)
DATA A/12500*0/,B/12500*0/
REAL* 8 E
\(\operatorname{OPEN}\) (1, FILE = 'AFGL . BIN' , STATUS = ' OLD',
1 RECORDTYPE='FIXED', RECL=7, FORM='UNFORMATTED',
2 IOSTAT=IERRS)
\(\operatorname{OPEN}(2\), FILE \(=\) ' SKIPA. DAT', STATUS = ' NEW')
\(I=0\)
READ (1, ERR \(=10\), END \(=20\) ) WNO, SO, GAMMAO , E, ISP, XN
J=WNO
\(\mathrm{A}(\mathrm{J})=\mathrm{A}(\mathrm{J})+1\)
\(I=I+1\)
IF ( \((I / 1000) * 1000\). EQ.I) PRINT*, I
IF (1.EQ.1) GO TO 1
PRINT*,' ERROR'
PRINT*,' ENDING, LINE ', I
B(1) \(=0\)
DO \(I=2,12500\)
\(B(I)=A(I-1)+B(I-1)\)
ENDDO
DO \(I=1,12500\)
\(W L=10000\). \(/ I\)
WRITE \((2,23) A(I), B(I), I, I+1, W L\)
FORMAT (2X,I7, 2X,I7, 4X,I5,'-', I5, 2X,F10.4)
ENDDO
END

\section*{PROGRAM GOTOLA}
```

C
c The purpose of this program is to quickly translate Mongo
c plot files intended for a graphics terminal to a Mongo plot
c file for the laser printer (device imp). THUS: GO to LA(ser).
c
C We do only 5 things to the file :
C
c 1) DEL all occurances of "TER" commands
c 2) DEL all occurances of "ERA" commands (ERASE)
c 3) Start the new .IMP file with "psland
c 4) End the new .IMP file with "hard"
c 5) Change 1st "LOC ..." to "LOC 80 570 100 500"
c 6) Change 2nd "loc ..." to "loc 585 750 100 560"
c - S. Lord 1-May-1988.
C
LOGICAL EX
CHARACTER*3 TROI
CHARACTER*77 REST
C
C Delete any old p.imp files
C
INQUIRE(FILE='p.imp',EXIST=EX)
IF(EX.EQ..TRUE.)THEN
OPEN(11,FILE='p.imp',STATUS='OLD')
CLOSE(11,STATUS='DELETE')
ENDIF
LOCFLG=0
C
10 CONTINUE
OPEN (1,FILE='p.plo',STATUS='OLD')
OPEN(2,FILE='p.imp',STATUS='NEW')
WRITE (2,111)
III FORMAT(' psland')
DO 1100 I=1,3000
READ (1, 33, END=44) TROI, REST
FORMAT (A3,A77)
IF(TROI.EQ.'TER'.OR.TROI.EQ.'ERA'.OR.
1 TROI.EQ.'ter'.OR.TROI.EQ.'era')GO TO 1100
IF (TROI.EQ.'LOC'.OR.TROI.EQ.'lOC')THEN
IF (LOCFLG.NE .1) THEN
REST=' }80570100 500
ELSE
REST=' 585 750 100 560'
ENDIF
LOCFLG=LOCFLG+1
ENDIF
WRITE (2, 33) TROI, REST
I100 CONTINUE
PRINT*,' A length problem??'
STOP
4 4
WRITE (2,45)

```

45
```

FORMAT('hard',/,'end')
print 46,'p'
FORMAT('... Success! "',AI,'.IMP" Created')
STOP
PRINT*,' Try again....'
GO TO 10
END

```

\section*{APPENDIX C}

\section*{OPERATING INSTRUCTIONS AND SAMPLE RUNS}

Example ATRAN runs on UNIX and VMS systems are shown.

Instructions to run the program atran.f and ATRAN.FOR
UNIX instructions: atran.f
We compile atran.f with:
f77-o atran atran.f
To run atran, type " /dir/atran "
where dir is the directory path to atran.
The program will ask you your terminal type for plotting.
If you are on a HDS, Graphon, or other Tektronics Emulating Terminal, select Tektronics; menu item 1. If you are on an \(X\) terminal,
select 2.
After running the program, you may wish to see the plot on the screen. type:
mongo
*term 11 (if your are on an \(X\) Terminal,
"term 3" if you are on a Tektronix emulator)
*inp p.plo
(Where mongo has typed the "*" .) Type
*end
to exit MONGO.
compile the program laseatran.f:
f77-o laseatran laseatran.f
To get a laser hardcopy, type:
laseatran
mongo
* inp p.imp
(Where mongo has typed the "*" .) Type *end
to exit MONGO.
VMS instructions (ATRAN.FOR)

ATRAN has been compiled with
fortran atran.for
link atran
then run atran.exe from any area with
\(r\) atrandir:atran the program will ask a series of questions, shown in the example below.

To get a plot on a graphics screen type:
MONGO
```

* inp p.plo
* end

```
Also, compile the program LASEATRAN.FOR:
FOR LASEATRAN
LIN LASEATRAN
To get a laser hardcopy, type:
LASEATRAN
MONGO
* INP P.IMP
(Where MONGO has typed the "*" .) Type "z to exit MONGO.

The following is a sample run of the program atran on a UNIX machine.
(A run on a VMS system would proceed identically,
except that the initial command would be "r atrandir:atran" rather than "atran")
Our helpful comments below begin with ">". User input appears after queries ending with a colon.
cygnus/work/lord>atran
> user selects program atran

Welcome to atmospheric modeling program!
If you don't know what to answer to a question, try the answer given in parentheses.

Input Terminal type.
1 for Tektronics, 2 for \(X\) window, 3 for Sunview window
4 for Graphon (1): 1
\{ 1\}
> user selects a Tek screen for graphics. Note: Graphon 230's
> support either Tek or GraphOn graphics type MONGO output
> (term 3 and 11 in 1989 VMS MONGO), HDS terminals support at least
> Tek (term 3) output. So if you have a Graphon, an HDS, or a
> Tek 4010 etc. emulating terminal, option 1 above may
> be best.
Plot \(x\)-axis units in wavelength (um) [1],
or wavenumbers \(\left(\mathrm{cm}^{\wedge}-1\right)\) [2] (1): \(1\{1\}\)
> With option 1, a wavelength scale (in micrometers)
> will appear on the bottom of the plot, and a velocity
> scale will appear on the top.
\(>\) With option 2, a wave number (10000/wavelength)
> scale will appear at the
> bottom and a wavelength scale will appear at the top.

Enter:
0 for a standard atmosphere of mixed gases,
1 for a single H 2 O layer (a tank),
2 for a special atmosphere, or -1 to exit ( 0 ): 0 \{ 0 \}
> user selects standard earth atmosphere model,
> the "U.S. Standard Atmosphere" (Ref. 16)
Enter altitude (feet) (41000): 41000
\{ 41000.0\}
> user selects typical flight altitude of the
> Kuiper Airborne Observatory.
The atmospheric model gives 7.3 Microns of water, toward the zenith.
Enter preferred value at this altitude in MICRONS,
or 0 for no adjustment of the model ( 0 ): 0
\{0.\}
> The program has integrated all the
> water vapor in its model (Ref. 15) above
> the airplane to be 7.3 precipitable microns.
> The user accepts this value.
Number of atmospheric layers (2 recommended) (2): 5 \{5\}
> A 5 layer atmosphere
> (modeling mixing ratio, density, pressure and temperature
> at 5 overhead points), is selected.
Zenith angle through atmosphere ( \(0=\mathrm{UP}\) ) ( 0 ): 0
\{0.\}
> the user has selected absorption along
> a line of sight directly overhead.
Enter wavelength of spectral line of interest
(this is used to make the velocity scale), or...,
-1 for species specification,
or else 0 for don't care ( 0 ): 0
\{0.\}
> the user does not care
> if the doppler velocity scale for
> the top abscissa
\(>\) is centered on a specific rest \((v=0)\) wavelength.
\(>\) So, \(v=0\) will be centered at
> the midpoint of the wavelength range, selected next.

You may enter the limits of the x-axis in either wavelength or velocity; each unit will be printed.
Enter wavelength range of interest; Lambda 1 and Lambda 2 in microns. ('0 0' for velocities instead) (10 10.1): 13.914 .1 \{ \(13.9000 \quad 14.1000\}\)
> The program will determine the transmission between 13.9 and 14.1
\(>\) micrometers. This will be the functions range on the \(x\)-axis.
> The plot box boundaries will frame a region slightly (10\%) larger.
Enter instrumental resolution in microns
( 0 for the CGS high resolution system resolution \(=60 \mathrm{~km} / \mathrm{s}\) ),
or -1 for no smoothing. (0): . 001
\{ 1.00000E-03\}
> the transmission spectrum will be smoothed by an
> "instrument" point spread function with full width
> at half power \(=0.001\) micrometers.
Setting the data point spacing (sampling)
to \(1 / 5\) instrument resolution...
There will be 1000 points plotted.
Their spacing will be 0.0002 microns.
Enter a new number of points, or 0 to keep these values, or -1 to change the spacing ( 0 ): 0 \{ 0 \}
> the output file and the plot will record data
> at \(1 / 5\) * 0.001 micrometer
> spacing, and over the range, this will
> amount to 1000 points. User accepts this.
Select instrument profile function:
[1] Triangle, [2] Gaussian, [3] Sinc, [4] Rectangle (2): 2
> the instrument function will be a
\(>\) Gaussian. We note that the FWHM of a
> rectangle function equals the FWZP
> of a rectangle - a rectangle function
> has vertical fall-off which preserves
> high frequencies present in the
\(>\) unsmoothed transmission spectra.
> The choice of this function can yield
> a more rapidly varying spectrum
> than will the others.
Reading through database to this wavelength regime \(\qquad\)
34125 CONSIDERED, 24 REJECTED
OF THOSE CONSIDERED.....
500 out of 34173 lines processed.
\begin{tabular}{|c|c|c|c|}
\hline 1000 & out of & 34173 & es processed. \\
\hline 1500 & out of & 34173 & lines processed \\
\hline 2000 & out of & 34173 & lines processed. \\
\hline 2500 & out of & 34173 & lines processed. \\
\hline 3000 & out of & 34173 & lines processed. \\
\hline 3500 & out of & 34173 & lines processed. \\
\hline 4000 & out of & 34173 & lines processed. \\
\hline 4500 & out of & 34173 & lines processed. \\
\hline 5000 & out of & 34173 & lines processed. \\
\hline 5500 & out of & 34173 & lines processed. \\
\hline 6000 & out of & 34173 & lines processed. \\
\hline 6500 & out of & 34173 & lines processed. \\
\hline 7000 & out of & 34173 & lines processed. \\
\hline 7500 & out of & 34173 & lines processed. \\
\hline 8000 & out of & 34173 & lines processed. \\
\hline 8500 & out of & 34173 & lines processed. \\
\hline 9000 & out of & 34173 & lines processed. \\
\hline 9500 & out of & 34173 & lines processed. \\
\hline 10000 & out of & 34173 & lines processed. \\
\hline 10500 & out of & 34173 & lines processed. \\
\hline 11000 & out of & 34173 & lines processed. \\
\hline 11500 & out of & 34173 & lines processed. \\
\hline 12000 & out of & 34173 & lines processed. \\
\hline 12500 & out of & 34173 & lines processed. \\
\hline 13000 & out of & 34173 & lines processed. \\
\hline 13500 & out of & 34173 & lines processed. \\
\hline 14000 & out of & 34173 & lines processed. \\
\hline 14500 & out of & 34173 & lines processed. \\
\hline 15000 & out of & 34173 & lines processed. \\
\hline 15500 & out of & 34173 & lines processed. \\
\hline 16000 & out of & 34173 & lines processed. \\
\hline 16500 & out of & 34173 & lines processed. \\
\hline 17000 & out of & 34173 & lines processed. \\
\hline 17500 & out of & 34173 & lines processed. \\
\hline 18000 & out of & 34173 & lines processed. \\
\hline 18500 & out of & 34173 & lines processed. \\
\hline 19000 & out of & 34173 & lines processed. \\
\hline 19500 & out of & 34173 & lines processed. \\
\hline 20000 & out of & 34173 & lines processed. \\
\hline 20500 & out of & 34173 & lines processed. \\
\hline 21000 & out of & 34173 & lines processed. \\
\hline 21500 & out of & 34173 & lines processed. \\
\hline 22000 & out of & 34173 & lines processed. \\
\hline 22500 & out of & 34173 & lines processed. \\
\hline 23000 & out of & 34173 & lines processed. \\
\hline 23500 & out of & 34173 & lines processed. \\
\hline 24000 & out of & 34173 & lines processed. \\
\hline 24500 & out of & 34173 & lines processed. \\
\hline 25000 & out of & 34173 & lines processed. \\
\hline 25500 & out of & 34173 & lines processed. \\
\hline 26000 & out of & 34173 & lines processed. \\
\hline 26500 & out of & 34173 & lines processed. \\
\hline 27000 & out of & 34173 & lines processed. \\
\hline
\end{tabular}
\begin{tabular}{lll}
27500 & out of & 34173 \\
28000 lines processed. \\
28500 out of & 34173 lines processed. \\
29000 out of & 34173 lines processed. \\
29500 out of & 34173 lines processed. \\
30000 out of & 34173 lines processed. \\
30500 out of & 34173 lines processed. \\
31000 out of & 34173 lines processed. \\
31500 out of & 34173 lines processed. \\
32000 out of & 34173 lines processed. \\
32500 out of & 34173 lines processed. \\
33000 out of & 34173 lines processed. \\
33500 out of & 34173 lines processed. \\
34000 out of & 34173 lines processed.
\end{tabular}
> This takes a few minutes.
> The seven species are indexed in the table
\(>\) below. The number of line accepted
> and rejected in each layer (abreviated
> LYR is given, along with an explanation
> as to why the line was accepted or
> rejected.
\(>\)
> The lines are broken up into 5 categories...
\(>\) IWEAK The line, even at line center is too weak to consider
IDELIN delta fn. in range
\(>\) (fn. has FWHP less than .5 FD ; is integrated)
\(>\) IDELOUT delta fn. out of range (rejected)
> IWIDEOUT broad line, out of range, (rejected)
> IWIDEIN broad line, in range, (integrated)
OF THOSE CONSIDERED.....
IWEAK \(1(\mathrm{H} 2 \mathrm{O}) 2(\mathrm{CO} 2) 3(\mathrm{O} 3) 4(\mathrm{~N} 2 \mathrm{O}) 5(\mathrm{CO}) 6(\mathrm{CH} 4) 7(\mathrm{O} 2)\)
Weak line, reject

\begin{tabular}{llllllll}
\(-M\) LYR. & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
LYR. & 2 & 0 & 0 & 4 & 0 & 0 & 0 \\
LYR. & 3 & 0 & 2 & 4 & 0 & 0 & 0 \\
LYR. 4 & 0 & 2 & 5 & 0 & 0 & 0 & 0 \\
LYR. 5 & 3 & 28 & 0 & 0 & 0 & 0 & 0
\end{tabular}

IDELOUT 1 ( H 2 O ) \(2(\mathrm{CO} 2) 3(\mathrm{O} 3) 4(\mathrm{~N} 2 \mathrm{O}) 5(\mathrm{CO}) 6(\mathrm{CH} 4) 7(\mathrm{O} 2)\)
Narrow line out range, reject
\begin{tabular}{lllllllll} 
LYR. & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
LYR. & 2 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\
LYR. & 3 & 0 & 2 & 4 & 0 & 0 & 0 & 0 \\
LYR. & 4 & 0 & 2 & 5 & 0 & 0 & 0 & 0 \\
LYR. 5 & 3 & 28 & 0 & 0 & 0 & 0 & 0
\end{tabular}

IWIDEOUT \(1(\mathrm{H} 2 \mathrm{O}) 2(\mathrm{CO} 2) 3(\mathrm{O} 3) 4(\mathrm{~N} 2 \mathrm{O}) 5(\mathrm{CO}) 6(\mathrm{CH} 4) 7(\mathrm{O} 2)\) Broad line out range, reject
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LYR. 1 & 171 & 9571 & 14981 & 152 & 0 & 0 & 0 \\
\hline LYR. 2 & 173 & 9991 & 16224 & 156 & 0 & 0 & 0 \\
\hline LYR. 3 & 178 & 10506 & 17545 & 162 & 0 & 0 & 0 \\
\hline LYR. 4 & 199 & 11502 & 18286 & 183 & 0 & 0 & 0 \\
\hline LYR. 5 & 194 & 12574 & 18484 & 199 & 0 & 0 & 0 \\
\hline IWIDEIN & 1 (H2 & O) 2 (CO & 2) 3 (03 & \(4(\mathrm{~N} 2 \mathrm{O})\) & 5 (CO) & & 7 (02) \\
\hline \multicolumn{8}{|l|}{Broad line in range, accept} \\
\hline LYR. 1 & 9 & 842 & 1315 & 15 & 0 & 0 & 0 \\
\hline LYR. 2 & 10 & 855 & 1394 & 15 & 0 & 0 & 0 \\
\hline LYR. 3 & 10 & 859 & 1532 & 14 & 0 & 0 & 0 \\
\hline LYR. 4 & 12 & 845 & 1592 & 14 & 0 & 0 & 0 \\
\hline LYR. 5 & 10 & 832 & 1595 & 14 & 0 & 0 & 0 \\
\hline
\end{tabular}

Converting opacity to transmittance...
Smoothing the Fine array.....
50 K out of 458 K smoothing operations done. 100 K out of 458 K smoothing operations done. 150 K out of 458 K smoothing operations done. 200 K out of 458 K smoothing operations done. 250 K out of 458 K smoothing operations done. 300 K out of 458 K smoothing operations done. 350 K out of 458 K smoothing operations done. 400 K out of 458 K smoothing operations done. 450 K out of 458 K smoothing operations done.
F TRANS, P TRANS: 0.6891120 .691854
Comment for plot (A20) (you may use mongo '\u', etc.) (Test):
demo
\{demo \}
The transmission of the atmosphere
> is first calculated at very high
> resolution, typically at 0.001
> delta-wavenumber resolution. (recall that
> delta-wavelength=delta-wavenumber
\(>x\) wavelength \({ }^{\wedge} 2 / 10000\), with units of
\(>\) microns and cm^-1.) The number of
> operations (mults and adds) necessary for
\(>\) smoothing equals the number of resolution
\(>\) elements (each . \(001 \mathrm{~cm}-1\) )
\(>\) across the smoothing function times
\(>\) the number of points in the final plot
\(>\) (1000 here). There are about 450 resolution
> elements across a . 001 micrometer
```

> FWHM Gaussian instrumental function
> here, so about 1/2 million multiplies
> must be done. Decreasing the number
> of points to plot, or the resolution,
> each decreases the number of smoothing
> operations linearly.
F TRANS, P TRANS: 0.6967122 0.7027934
> these quantities are the average atmospheric transition
> before and after smoothing
Comment for plot (A20) (you may use mongo '\u', etc.)(Test): demo
> There is a comment line in the plot. The comment here is "demo"
Another function on this plot (Y or N) (N): n
p.plo, a MONGO control file has been made.
parray.dat1, the output data has been written.
> the x,Y data pairs (wavelength, transmission)
> have been written to a
> parray.datl. A mongo style plotting file has been written to
> the users area, and is called p.plo
mongo ! (This is LICKMONGO)

* input p.plo
> this will produce a plot on the screen shown in figure Cl
> to get a hard copy, follow this example...
cygnus/work/lord> laseatran
... Success! "P.IMP" Created
cygnus/work/lord> mongo
 * inp p.imp
using paper size letter
-17 vectors plotted.
 * end

```

For users wishing to automate the running of this program, we list below the input.
```

************ Input Alone

```
1 ! Tektronics terminal
1 ! wavelength is on the \(x\)-axis
\(0 \quad\) ! a standard atmosphere
41000 ! altitude in feet
0 ! use model overhead water vapor
1 ! number of layers
```

0 :- menith angle
0 ! wavelength of velocity=0
13.9 14.1 ! the range of the x-axis
.001 ! resolution in microns
O
2
demo
e
no

```
```

use default plot spacing

```
use default plot spacing
select Gaussian function
select Gaussian function
plot label, \\e is end of string
plot label, \\e is end of string
no more plots on this axis
```

no more plots on this axis

```

Next we list a run that uses some of the other features of the program...
cygnus/work/lord> atran
Welcome to EXPERIMENTAL atmospheric modeling program!
If you don't know what to answer to a question, try the answer given in parentheses.

Input Terminal type.
1 for Tektronics, 2 for \(X\) window, 3 for Sunview window
4 for Graphon (1): 1
\{ 1 \}
Plot \(x\)-axis units in wavelength (um) [1],
or wavenumbers ( \(\mathrm{cm}^{\wedge}-1\) ) [2] (1): 2
\{ 2 \}
> user selects wavenumbers for bottom \(x\)-axis, top \(x\)-axis will be wavelength

Enter:
0 for a standard atmosphere of mixed gases,
1 for a single \(H 20\) layer ( \(a\) tank),
2 for a special atmosphere, or -1 to exit (0): 2 2\}
> by answering with option 2 here, the user may adjust the quantity of > gases (other than H2O) in the atmosphere
\begin{tabular}{lclllll} 
Molecule: & CO 2 & \(\mathrm{O} 3(\) tot \(/ \mathrm{cm} 2)\) & N 2 O & CO & \multicolumn{1}{l}{CH 4} & \multicolumn{1}{l}{O 2} \\
Index: & 2 & 3 & 4 & 5 & 6 & 7 \\
PPM: & 330. & \(9.13 \mathrm{E}+18\) & 0.28 & 0.075 & 1.6 & \(2.1 \mathrm{E}+05\)
\end{tabular}

Enter 0 to continue or the gas index number to change the ppm of that gas: 3
\{ 3.\}
> user will modify ozone content
Ozone layer has total column density of \(9.1299999 \mathrm{E}+18\)
(this is looking through the entire atmosphere) (in molecules per \(\mathrm{cm}^{\wedge} 2\) ). New value (use a negative number to input in Dobson units):
\(\left\{\begin{array}{l}1.3 \mathrm{e}^{-} 19 \\ 1.30000 \mathrm{E}+19\}\end{array}\right.\)
> there will be a little more ozone than the standard model
\begin{tabular}{lclclcc} 
Molecule: & CO 2 & \(\mathrm{O} 3(\) tot \(/ \mathrm{cm} 2)\) & N 2 O & CO & CH 4 & \multicolumn{2}{l}{O 2} \\
Index: & 2 & 3 & 4 & 5 & 6 & 7 \\
PPM: & 330. & \(1.30 \mathrm{E}+19\) & 0.28 & 0.075 & 1.6 & \(2.1 \mathrm{E}+05\)
\end{tabular}

Enter 0 to continue or the gas index number
to change the ppm of that gas: 0
\{ 0 \}
> user is happy with other gas parts per million (ppm).
Enter altitude (feet) (41000): 13500
\{ 13500.0\}
> user has selected an altitude characteristic of
> a mountain top observatory.
The atmospheric model gives 3.5 Millimeters of water, toward the zenith.
Enter preferred value at this altitude in MICRONS,
or 0 for no adjustment of the model (0): 2000
\{ 2000.00\}
> user has forced the overhead water vapor to be 2 mm .
Number of atmospheric layers (2 recommended) (2): 1
\{ 1 \}
> a single layer atmosphere will
> provide the model. The calculations will
> be rapid, although the line shapes may
> be slightly broader than in the
> more accurate multi-layer runs.
Zenith angle through atmosphere ( \(0=\mathrm{UP}\) ) ( 0 ): 45 \{ 45.0000 \}
\(>\) The source will be at an angle 45 deg. from
> the zenith, so we will
> look through root 2 airmasses, increasing
> the column density of all gases
> by this amount.
Enter wavelength of spectral line of interest
(this is used to make the velocity scale), or...,
-1 for species specification,
or else 0 for don't care ( 0 ): -1
\{ - 1.00000 \}
> user has chosen to select a spectral line from the internal list
```

Enter species, eg. OI,
(enter 'NO' to get out, enter 'LI' to print the list) (NO): LI
{LI }
> user has asked to see the list
SIII at wavelength 18.71300
SIII2 at wavelength 33.48000
OIII at wavelength 51.81500
OIII2 at wavelength 88.35600
OI at wavelength 63.18372
OI2 at wavelength 145.52548
CII at wavelength 157.74100
NIII at wavelength 57.33000
SiII at wavelength 34.81400
NeIII at wavelength 36.01000
NII at wavelength 121.89700
SI at wavelength 25.24900
FeII at wavelength 25.98820
OIV at wavelength 25.87000
NeV at wavelength 24.28000
FeIII at wavelength 22.93000
Enter species, eg. OI,
(enter 'NO' to get out, enter 'LI' to print the list) (NO): SIII
{SIII }
> user picks Sulfur++
SIII Wavelength = 18.7130
You may enter the limits of the x-axis in either
wavelength or velocity; each unit will be printed.
Enter wavelength range of interest; Lambda 1 and Lambda 2 in microns.
('0 0' for velocities instead) (10 10.1): 0 0
{0 0}
> user chooses to specify wavelength
> range using velocities from line center.
> Note, wavenumbers could have been
> entered, by using negative numbers here.
> if the user had answered -530,-540, the
> plot range would be from
> 530 cm-1 to 540 cm-1.
Enter beginning and ending velocity (km/s)
for plot (-1000 1000): -3000 3000
{ -3000.00 3000.00}
the velocity range will run
> from }-3000\textrm{km}/\textrm{s}\mathrm{ to }+3000\textrm{km}/\textrm{s}\mathrm{ around the rest
> wavelength.
The wavelength range is then 18.52574 18.90026

```

Enter instrumental resolution in microns
( 0 for the CGS high resolution system resolution \(=60 \mathrm{~km} / \mathrm{s}\) ), or -1 for no smoothing. (0): 0
\{0.\}
> the resolution is set to \(60 \mathrm{~km} / \mathrm{s}\) (about . 0035 microns)
Setting the data point spacing
> (sampling) to \(1 / 5\) instrument resolution...
There will be 500 points plotted.
Their spacing will be 0.0007 microns.
Enter a new number of points, or 0 to keep these values, or
-1 to change the spacing (0): 300
\{ 300\}
> user has chosen to have fewer points plotted.
> There will be 3 points per
> FWHP of the instrument function plotted.
Select instrument profile function:
[1] Triangle, [2] Gaussian, [3] Sinc, [4] Rectangle (2): 4 \{ 4 \}
> the instrument function is rectangular
Reading through database to this wavelength regime
\begin{tabular}{rll}
500 out of & 40581 lines processed. \\
1000 out of & 40581 lines processed. \\
1500 out of & 40581 lines processed. \\
2000 out of & 40581 lines processed. \\
2500 out of & 40581 lines processed. \\
3000 out of & 40581 lines processed. \\
3500 out of & 40581 lines processed. \\
4000 out of & 40581 lines processed. \\
4500 out of & 40581 lines processed. \\
5000 out of & 40581 lines processed. \\
5500 out of & 40581 lines processed. \\
6000 out of & 40581 lines processed. \\
6500 out of & 40581 lines processed. \\
7000 out of & 40581 lines processed. \\
7500 out of & 40581 lines processed. \\
8000 out of & 40581 lines processed. \\
8500 out of & 40581 lines processed. \\
9000 out of & 40581 lines processed. \\
9500 out of & 40581 lines processed. \\
10000 out of & 40581 lines processed. \\
10500 out of & 40581 lines processed. \\
11000 out of & 40581 lines processed. \\
11500 out of & 40581 lines processed. \\
12000 out of & 40581 lines processed. \\
12500 out of & 40581 lines processed. \\
13000 out of & 40581 lines processed.
\end{tabular}


40581 lines processed. 40581 lines processed. 40581 lines processed.
40581 lines processed.
40581 lines processed.
40581 lines processed.
40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed. 40581 lines processed.
```

 40000 out of 40581 lines processed.
 40354 CONSIDERED, 32 REJECTED
 OF THOSE CONSIDERED.....
 IWEAK 1(H2O)2(CO2)3(O3) 4(N2O) 5(CO) 6(CH4)7(O2)
 Weak line, reject
    ```


That's VERY little 03! Typical min is \(6.86 \mathrm{E} 18 / \mathrm{cm}^{\wedge} 3\) which is 263.8462 Dobson units
Molecule: CO 2 O (tot/cm2) N 2 O CO \(\mathrm{CH} 4 \quad \mathrm{O} 2\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Index: & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline PPM: & 330. & 5.00E+17 & 0.28 & 0.075 & 1.6 & 2.1E+05 \\
\hline \multicolumn{7}{|l|}{Enter 0 to continue or the gas} \\
\hline \multicolumn{7}{|l|}{index number to change the ppm of that gas: 0 \(\{0\) \}} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Enter altitude (feet) (41000): 13500
\(\{13500\}\)}} \\
\hline & & & & & & \\
\hline
\end{tabular}

The atmospheric model gives 3.5 Millimeters of water, toward the zenith.
Enter preferred value at this altitude in MICRONS, or 0 for no adjustment of the model (0): 1000
> this second function will have only 1 mm H 2 O and also less ozone ..... (some dialog skipped)

F TRANS, P TRANS: 0.8544870 .852218
Another function on this plot (Y or \(N\) ) (N): N
P.PLO, a MONGO control file has been made.

PARRAY.DAT, the output data has been written.
mongo
* term 3
* input p.plo

This will yield a plot like the one shown in Figure C2.
to make a hard copy
/work/lord/laseatran
then start mongo again....
mongo
* input p.imp
* end
and you will get a hardcopy.



\section*{APPENDIX D}

\section*{MODEL ATMOSPHERE TABLE}

The standard atmosphere model is given showing pressure, temperature, and column density as a function of altitude. The median pressure and temperature overhead is also given, and four ozone profiles for different latitudes.

0.0288 .21 .00007 .410 E 222.148 E 25280.6252 .6 . 86 \(\begin{array}{lllllllll}0.1 & 287.5 & 0.9881 & 6.705 E 22 & 2.123 E 25 & 279.8 & 252.0 & .8561\end{array}\) \(0.2286 .90 .97646 .341 E 222.098 E 25279.3251 .4\). 8489 \(0.3286 .20 .9645 \quad 6.055 \mathrm{E} 222.072 \mathrm{E} 25 \quad 278.9250 .8\). 8430 \(\begin{array}{llllllllll}0.4 & 285.6 & 0.9535 & 5.777 E 22 & 2.049 E 25 & 278.6 & 250.3 & .8372\end{array}\) \(0.5284 .90 .9415 \quad 5.473 \mathrm{E} 222.023 \mathrm{E} 25278.2249 .7\). 8307 0.6284 .30 .93085 .201 E 222.000 E 25277.7249 .1 .8240 \(0.7283 .60 .91944 .926 \mathrm{E} 22 \quad 1.975 \mathrm{E} 25277.0248 .5\). 0133 \(0.8 \quad 282.9 \quad 0.90844 .666 \mathrm{E} 221.952 \mathrm{E} 25275.6248 .0\). 7906 \(0.9282 .3 \quad 0.89784 .400 E 221.929 E 25272.8247 .4\). 7497
 \(\begin{array}{llllllllllllllllllll}1.1 & 281.0 & 0.8765 & 3.898 E 22 & 1.884 E 25 & 270.5 & 246.3 & .7176\end{array}\) \(1.2280 .40 .8660 \quad 3.617 E 221.861 E 25 \quad 268.7 \quad 245.7\). 6928 1.3279 .70 .85533 .332 E 22 1.838E25 266.5245 .2 . 6634 \(1.4279 .0 \quad 0.84433 .059 \mathrm{E} 221.815 \mathrm{E} 25 \quad 265.1244 .5\). 6454 1.5278 .40 .83442 .824 E 221.793 E 25263.9244 .0 . 6299
 \(\begin{array}{llllllllllllll}1.7 & 277.1 & 0.8138 & 2.468 \mathrm{E} 22 & 1.749 E 25 & 262.1 & 242.8 & .6074\end{array}\) 1.8276 .50 .80432 .402 E 221.729 E 25261.7242 .3 .6032 \(\begin{array}{lllllllllllllll}1.9275 .8 & 0.7945 & 2.352 E 22 & 1.708 E 25 & 261.4 & 241.7 & .5998\end{array}\) 2.0275 .20 .78462 .307 E 221.687 E 25261.2241 .2 . 5967 2.1274 .50 .77472 .271 E 221.665 E 25261.0240 .6 . 5943 \(2.2273 .80 .76492 .236 E 221.644 E 25260.8240 .0\). 5919 \(2.3273 .20 .75562 .212 E 221.624 E 25260.7239 .4\). 5903 2.4272 .60 .74642 .188 E 221.605 E 25260.5238 .9 . 5887 \(2.5271 .90 .73722 .110 E 221.585 \mathrm{E} 25 \quad 260.1238 .3\). 5836
 \(2.7270 .6 \quad 0.71871 .954 \mathrm{E} 221.545 \mathrm{E} 25 \quad 259.2 \quad 237.2\). 5736 \(2.8269 .90 .70951 .907 \mathrm{E} 221.526 \mathrm{E} 25 \quad 258.9236 .6\). 5703 \(2.9269 .30 .70081 .854 E 221.507 E 25258.6236 .0\). 5664 \(3.0268 .7 \quad 0.6922 \quad 1.806 \mathrm{E} 22 \quad 1.488 \mathrm{E} 25 \quad 258.3 \quad 235.5 \quad .5627\) \(3.1268 .0 \quad 0.6836 \quad 1.762 E 221.470 E 25 \quad 258.0234 .9 .5594\) \(3.2267 .40 .67491 .723 \mathrm{E} 22 \quad 1.451 \mathrm{E} 25 \quad 257.7234 .4\). 5564 \(3.3266 .7 \quad 0.66631 .682 \mathrm{E} 221.433 \mathrm{E} 25 \quad 257.5233 .8\). 5535 \(3.4266 .10 .65771 .628 \mathrm{E} 221.414 \mathrm{E} 25 \quad 257.2233 .2 .5498\) \(3.5265 .40 .64911 .560 \mathrm{E} 221.396 \mathrm{E} 25 \quad 256.8232 .6\). 5454 \(3.6264 .7 \quad 0.64051 .491 E 221.378 E 25 \quad 256.4232 .0\). 5412 \(3.7264 .1 \quad 0.63251 .431 E 221.360 E 25256.0231 .5\). 5376 \(\begin{array}{lllllllllllllllll}3.8 & 263.5 & 0.6244 & 1.372 E 22 & 1.343 E 25 & 255.7 & 230.9 & .5340\end{array}\) \(3.9262 .8 \quad 0.61631 .307 \mathrm{E} 221.326 \mathrm{E} 25 \quad 255.4230 .3\). 5301 \(4.0262 .10 .60831 .241 E 22\) 1.308E25 255.0229 .8 . 5260 \(4.1261 .50 .60031 .180 E 22 \quad 1.291 E 25 \quad 254.7229 .2\). 5223 \(4.2260 .9 \quad 0.59291 .125 \mathrm{E} 221.275 \mathrm{E} 25\) 254.3 228.6 . 5190 \(4.3260 .20 .58521 .067 E 221.259 E 25254.0228 .1 \quad .5154\) \(4.4259 .60 .57741 .006 \mathrm{E} 221.242 \mathrm{E} 25 \quad 253.7227 .5\). 5116
.50006 .8581 E 188.4126 E 181.0325 E 191.2119 E 19 49416.8539 E 188.4054 E 181.0316 E 191.2111 E 19 \(48826.8497 E 188.3983 E 181.0308 E 191.2104 \mathrm{E} 19\) 48226.8456 E 188.3914 E 181.0299 E 191.2097 E 19 47676.8414 E 188.3845 E 181.0290 E 19 1.2090E19 \(47086.8373 E 188.3778 E 18 \quad 1.0281 E 191.2083 E 19\) \(.46546 .8332 \mathrm{E} 188.3712 \mathrm{E} 18 \quad 1.0272 \mathrm{E} 191.2076 \mathrm{E} 19\) .45976 .8291 E 188.3647 E 181.0264 E 191.2069 E 19 .45426 .8251 E 188.3584 E 181.0255 E 191.2062 E 19 \(.44896 .8210 E 188.3521 E 181.0247 E 191.2055 E 19\) \(.44366 .8170 E 188.3460 E 181.0238 E 191.2048 E 19\) \(.43836 .8130 E 188.3400 E 181.0230 E 191.2041 E 19\) .43306 .8090 E 188.3340 E 181.0221 E 191.2034 E 19 .42776 .8050 E 188.3281 E 181.0213 E 191.2027 E 19 .42226 .8011 E 188.3223 E 181.0205 E 191.2021 E 19 41726.7971 E 188.3165 E 181.0197 E 191.2014 E 19 \(.41216 .7932 E 188.3107 E 181.0189 E 191.2007 E 19\) .40696 .7892 E 188.3050 E 181.0180 E 191.2001 E 19 \(.40216 .7853 E 188.2994 \mathrm{E} 181.0172 \mathrm{E} 191.1994 \mathrm{E} 19\) .39726 .7814 E 188.2938 E 181.0164 E 191.1988 E 19 .39236 .7775 E 188.2882 E 181.0156 E 191.1981 E 19 .38746 .7736 E 188.2827 E 181.0149 E 191.1975 E 19 \(38246.7697 E 188.2773 E 181.0141 E 191.1968 \mathrm{E} 19\) .37786 .7659 E 188.2719 E 181.0133 E 191.1962 E 19 .37326 .7622 E 18 8.2665E18 1.0125 E 191.1956 E 19 . 3686 6.7586E18 8.2612E18 1.0118 E 191.1949 E 19 .36406 .7550 E 188.2560 E 181.0110 E 191.1943 E 19 .35946 .7514 E 18 8.2508E18 1.0103 E 191.1937 E 19 .35486 .7479 E 188.2456 E 181.0095 E 191.1931 E 19 .35046 .7445 E 188.2405 E 181.0088 E 191.1925 E 19 .34616 .7412 E 18 8.2355E18 1.0081 E 191.1919 E 19 .34186 .7379 E 188.2305 E 181.0074 E 191.1912 E 19 .3375 6.7346E18 8.2255E18 1.0067 E 191.1906 E 19 .33316 .7313 E 188.2206 E 181.0060 E 191.1900 E 19 .32886 .7281 E 188.2158 E 181.0053 E 191.1894 E 19 .32456 .7249 E 188.2110 E 181.0046 E 191.1888 E 19 \(.32036 .7217 E 188.2062 \mathrm{E} 181.0039 \mathrm{E} 191.1882 \mathrm{E} 19\) .31626 .7185 E 188.2015 E 181.0032 E 191.1876 E 19 \(31226.7153 E 188.1969 E 181.0025 E 191.1870 E 19\) \(30826.7122 E 188.1923 E 181.0018 E 191.1864 E 19\) \(30416.7091 \mathrm{E} 188.1877 E 181.0011 \mathrm{E} 19\) 1.1858E19 \(30016.7060 \mathrm{E} 18 \quad 8.1832 \mathrm{E} 18 \quad 1.0005 \mathrm{E} 191.1852 \mathrm{E} 19\) . 2964 6.7029E18 8.1788E18 9.9978 E 181.1846 E 19 2926 6.6998E18 8.1744E18 9.9910 E 18 1.1840E19 . 28876.6968 E 18 8.1700E18 9.9843 E 181.1834 E 19

\(4.5258 .90 .56969 .489 E 211.225 E 25253.3226 .9\).5083 . 28486.6938 E 18 8.1656E18 9.9775E18 1.1828E19 \(4.6258 .30 .56228 .997 E 211.209 E 25253.0226 .4\). 5048 . 28116.6908 E 18 8.1613E18 \(9.9707 E 18\) 1.1822E19 \(4.7257 .60 .55528 .529 E 211.194 E 25252.7225 .8\). 5016 . 27766.6878 E 18 8.1571E18 9.9640E18 1.1816E19 \(4.8257 .00 .54807 .999 E 211.179 E 25252.3225 .3\). 4973 . 27406.6848 E 18 8.1529E18 \(9.9573 E 181.1810 \mathrm{E} 19\) \(4.9256 .30 .54067 .406 E 211.163 E 25251.7224 .7\). 4910 . 27036.6819 E 18 8.1487E18 9.9506 E 18 1.1804E19 \(5.0255 .70 .53366 .824 E 211.148 E 25250.9224 .1\). 4832 . 26686.6790 E 18 8.1445E18 9.9438 E 18 1.1798E19 5.1255 .10 .52666 .248 E 211.133 E 25250.1223 .6 . 4747 . 26336.6761 E 18 8.1404E18 9.9371 E 181.1792 E 19 \(5.2254 .40 .51955 .667 E 211.118 E 25249.1222 .8 .4649\). 2597 6.6732 E 18 8.1364E18 9.9304 E 18 1.1786E19 5.3253 .70 .51245 .093 E 211.103 E 25248.1221 .9 . 4549 . 25626.6703 E 18 8.1323E18 9.9237 E 18 l 1.1780 E 19
 5.5252 .40 .49864 .076 E 211.073 E 25246.6220 .4 .4407 . 24936.6647 E 18 8.1242E18 9.9102E18 1.1768 E 19
 \(5.7251 .20 .48553 .497 E 211.045 E 25245.6219 .2\). 4318 . 24286.6591 E 18 8.1163E18 9.8967 E 181.1756 E 19 5.8250 .50 .47913 .270 E 211.031 E 25245.2218 .6 . 4284 . 23966.6563 E 18 8.1123E18 9.8900 E 181.1750 E 19
 6.0249 .20 .46612 .866 E 211.003 E 25244.6217 .7 .4222 . 23306.6509 E 18 8.1044E18 9.8764E18 1.1738E19 6.1248 .60 .45992 .695 E 219.898 E 24244.2217 .3 . 4191 . 22996.6482 E 18 8.1005E18 9.8696 E 18 1.1731E19

 6.4246 .60 .44112 .052 E 21 9.495E24 240.2 216.7 . 3842 . 2206 6.6403E18 8.0888E18 9.8490E18 1.1713E19 6.5246 .00 .43521 .860 E 21 9.368E24 237.3216 .7 . 3601 . 21766.6378 E 18 8.0849E18 9.8421 E 181.1706 E 19 6.6245 .30 .42921 .662 E 21 9.239E24 234.2216 .7 . 3364 . 2146 6.6353E18 8.0810E18 9.8351 E 181.1699 E 19 6.7244 .70 .42311 .460 E 21 9.109E24 231.1216 .7 . 3133 . 2116 6.6328E18 8.0771E18 9.8282 E 181.1693 E 19 \(6.8244 .0 \quad 0.41711 .300 \mathrm{E} 218.979 \mathrm{E} 24229.4216 .7\). 3014 . 2085 6.6304 E 18 8.0732E18 9.8212 E 181.1686 E 19 6.9243 .30 .41141 .205 E 218.857 E 24228.7 216.7 . 2969 . 2057 6.6280E18 8.0693E18 9.8141 E 181.1679 E 19 7.0242 .70 .40571 .153 E 218.735 E 24228.4216 .7 . 2945 . 20296.6257 E 18 8.0654E18 9.8070 E 18 1.1672E19 7.1242 .00 .39991 .118 E 218.609 E 24228.1216 .7 . 2928 . 19996.6234 E 18 8.0615E18 9.7999 E 181.1665 E 19
 7.3240 .70 .38861 .051 E 218.367 E 24227.6216 .7 . 2895 . 19436.6188 E 18 8.0537E18 9.7853 E 181.1650 E 19

 \(7.6238 .80 .37279 .671 E 208.025 E 24227.0216 .6\). 2852 . 18636.6120 E 18 8.0417E18 9.7623E18 1.1626E19 \(7.7238 .20 .36749 .508 E 207.912 E 24226.8216 .7\). 2843 . 1837 6.6098E18 \(8.0377 E 189.7544 \mathrm{E} 181.1618 \mathrm{E} 19\)

 \(8.0236 .20 .35209 .013 \mathrm{E} 20 \quad 7.580 \mathrm{E} 24226.5216 .7\). 2818 . 17606.6031 E 18 8.0255E18 9.7297 E 18 1.1591E19
 \(8.2234 .90 .34178 .566 E 207.360 E 24226.1216 .6\). 2796 . \(17096.5987 E 188.0173 E 189.7127 E 18 \quad 1.1571 E 19\)
 8.4233 .60 .33198 .081 E 207.148 E 24225.7216 .6 . 2772 . 16596.5944 E 18 8.0091E18 9.6952 E 18 1.1547E19 8.5233 .00 .32707 .831 E 207.043 E 24225.6216 .6 . 2759 . 1635 6.5922E18 8.0049E18 9.6863 E 18 1.1534E19 \(8.6232 .20 .32237 .638 E 206.943 E 24225.4216 .7\). 2749 . \(16116.5901 E 188.0008 E 189.6774 E 181.1520 \mathrm{E} 19\) \(8.7231 .70 .31767 .470 E 206.842 \mathrm{E} 24225.2216 .6\). 2741 . 1588 6.5879E18 7.9966 E 18 9.6684E18 1.1505 E 19 \(8.8231 .00 .31317 .291 E 206.745 \mathrm{E} 24225.1216 .6\). 2731 . 15666.5858 E 18 7.9925E18 9.6592 E 18 l 1.1489 E 19



 \(9.2228 .40 .29505 .818 E 206.355 E 24223.9216 .7\). 2657 . 1475 6.5774E18 7.9756E18 9.6216E18 1.1415E19 \(9.3227 .80 .29075 .374 E 206.263 E 24223.5216 .6\). 2636 . \(14536.5753 E 187.9713 E 189.6117 E 181.1395 E 19\)

 \(9.6225 .80 .27784 .105 E 205.987 E 24222.1216 .7\). 2568 . 13896.5690 E 18 7.9578E18 9.5804E18 \(1.1332 E 19\) \(9.7225 .20 .27383 .710 E 205.900 \mathrm{E} 24221.4216 .7\). 2537 . 13696.5669 E 187.9532 E 18 g 9.5694E18 1.1310 E 19 \(9.8224 .50 .26963 .298 E 20 \quad 5.810 E 24220.5216 .7\). 2495 . 1348 6.5648E18 7.9485 E 18 9.5582E18 1.1287 E 19 \(9.9223 .90 .26552 .886 E 205.722 E 24219.7216 .7\). 2460 . 1328 6.5627E18 \(7.9438 E 18\) 9.5467E18 1.1264E19 \(10.0223 .20 .26172 .49 B E 205.639 E 24219.1216 .7\). 2425 . 1309 6.5606E18 7.9389E18 9.5350E18 1.1241E19 \(10.1222 .20 .25742 .091 E 205.547 E 24218.5216 .7\). 2388 . 1287 6.5585E18 7.9340E18 9.5230E18 1.1217E19 \(10.2221 .30 .25341 .839 E 205.462 E 24218.1216 .7\). 2363 . 12676.5564 E 18 7.9291E18 9.5104 E 181.1192 E 19


 \(10.6218 .40 .23831 .018 E 205.136 E 24216.7216 .7\). 2218 . 11916.5481 E 18 7.9092E18 9.4540 E 181.1086 E 19 \(10.7217 .90 .23468 .345 E 195.056 E 24216.7216 .7\). 2131 .1173 6.5461E18 7.9042E18 9.4384E18 1.1058 E 19 10.8217 .50 .23117 .074 E 194.981 E 24216.7 216.7 2016 . 11556.5440 E 18 7.8992E18 9.4222 E 18 l 1.1029 E 19 \(10.9217 .10 .22766 .168 E 194.905 E 24216.7216 .7\). 1922 .1138 6.5420 E 18 7.8941E18 9.4054E18 1.1000 E 19 11.0216 .80 .22415 .464 E 194.830 E 24216.6216 .7 . 1841 . 11206.5400 E 18 7.8890E18 9.3880E18 1.0969E19 11.1216 .70 .22064 .892 E 194.755 E 24216.7216 .7 . 1773 . 11036.5380 E 18 7.8839E18 9.3700 E 181.0938 E 19
 \(11.3216 .70 .21364 .202 E 194.605 E 24216.7216 .7\). 1683 . 10686.5340 E 187.8735 E 18 9.3331E18 1.0874 E 19 \(11.4216 .70 .21033 .997 E 194.533 E 24216.7216 .7\). 1653 . \(10516.5320 E 18 \quad 7.8681 E 18\) 9.3142E18 1.0840 E 19
 \(11.6216 .70 .20383 .648 E 194.394 E 24216.7216 .7\). 1601 . 10196.5280 E 18 7.8571E18 9.2755 E 181.0770 E 19 \(11.7216 .70 .20073 .492 E 194.327 E 24216.6216 .7\). 1577 . \(10036.5260 E 187.8515 E 18\) 9.2557E18 \(1.0734 E 19\) \(11.8216 .70 .19743 .328 E 194.257 E 24216.6216 .6\). 1552 . 0987 6.5240 E 18 7.8457E18 9.2356 E 18 l 1.0696 E 19 \(11.9216 .70 .19453 .186 E 194.194 E 24216.7216 .7\). 1530 . 0972 6.5220 E 18 7.8399E18 9.2152 E 181.0658 E 19 \(12.0216 .70 .19153 .053 E 194.130 E 24216.6216 .7\). 1507 . 0957 6.5200E18 7.8340 E 18 9.1945E18 1.0619 E 19 12.1216 .60 .18852 .922 E 194.065 E 24216.7216 .6 . 1485 \(12.2216 .6 \quad 0.1855 \quad 2.792 \mathrm{E} 193.999 \mathrm{E} 24216.7 \quad 216.7\). 1463 12.3216 .70 .18262 .672 E 193.938 E 24216.6216 .7 . 1440 \(12.4216 .6 \quad 0.17972 .549 \mathrm{E} 193.876 \mathrm{E} 24216.7216 .6\). 1414 \(12.5216 .7 \quad 0.17682 .427 E 193.813 E 24216.7216 .6\). 1386

 \(12.8216 .70 .16882 .118 E 193.640 \mathrm{E} 24216.7216 .6\). 1303 12.9216 .70 .16632 .031 E 193.586 E 24216.7216 .6 . 1277 \(\begin{array}{lllllllllllllll}13.0 & 216.6 & 0.1637 & 1.944 E 19 & 3.530 E 24 & 216.7 & 216.7 & .1248\end{array}\) \(13.1216 .7 \quad 0.16111 .858 E 193.475 \mathrm{E} 24 \quad 216.7 \quad 216.6\). 1214 \(13.2 \quad 216.6 \quad 0.1586 \quad 1.775 \mathrm{E} 193.421 \mathrm{E} 24 \quad 216.7 \quad 216.6\). 1177 \(13.3216 .60 .15611 .693 E 193.368 \mathrm{E} 24216.7\) 216.7 11136 . 07816.4940 E 187.7502 E 188.9125 E 181.0067 E 19 \(13.4216 .70 .15371 .614 E 193.315 E 24216.7216 .7\). 1092 . 0768 6.4919 E 187.7430 E 188.8890 E 181.0021 E 19

\(13.5216 .60 .15121 .542 E 193.262 E 24216.7216 .6\). 1059 . 0756 6.4899E18 7.7355 E 18 8.8650E18 9.9750E18 \(13.6216 .70 .14881 .470 E 193.211 \mathrm{E} 24216.7216 .6\). 1027 . \(07446.4879 E 187.7279 E 188.8405 E 189.9280 E 18\) 13.7216 .70 .14661 .405 E 193.163 E 24216.6216 .6 . 0997 . 07336.4858 E 187.7202 E 18 8.8155E18 9.8804E18
 13.9216 .70 .14211 .289 E 193.065 E 24216.6216 .6 . 0941 . 07116.4816 E 187.7041 E 18 8.7640E18 9.7834 E 18 \(14.0216 .70 .13991 .241 E 193.018 E 24216.7216 .6\). 0915 . 06996.4796 E 18 7.6957E18 8.7375E18 9.7340 E 18

 14.3216 .70 .13331 .110 E 192.877 E 24216.6216 .6 . 0833 . 0667 6.4732E18 7.6698 E 18 8.6556E18 9.5837 E 18 14.4216 .70 .13121 .074 E 192.832 E 24216.6216 .6 . 0808 . 0656 6.4710E18 7.6608 E 18 8.6277E18 9.5334 E 18
 \(14.6216 .70 .12721 .007 E 192.744 E 24216.7 \quad 216.6\). 0766 14.7216 .70 .12529 .775 E 182.702 E 24216.6216 .6 . 0749 14.8216 .70 .12339 .520 E 182.662 E 24216.6216 .6 . 0734 \(14.9216 .70 .12149 .287 \mathrm{E} 182.621 \mathrm{E} 24216.7 \quad 216.5\). 0720 15.0216 .70 .11959 .077 E 182.580 E 24216.6216 .5 . 0706 \(\begin{array}{lllllll}15.1 & 216.7 & 0.1176 & 8.866 E 18 & 2.539 E 24 & 216.7 & 216.5 \\ \text {. } 0690\end{array}\) \(15.2216 .70 .11588 .670 E 182.500 E 24216.7216 .5\). 0675 \(\begin{array}{llllllllllll}15.3 & 216.7 & 0.11408 .500 \mathrm{E} 18 & 2.461 \mathrm{E} 24 & 216.6 & 216.5 & .0660\end{array}\)
 15.5216 .70 .11048 .188 E 182.383 E 24216.6216 .6 . 0634 15.6216 .70 .10878 .021 E 182.346 E 24216.6216 .7 . 0622 \(15.7216 .70 .10707 .837 E 182.309 E 24216.5216 .7\). 0609 \(\begin{array}{lllllll}15.8 & 216.7 & 0.10547 .654 E 18 & 2.275 E 24 & 216.5 & 216.8 & .0596\end{array}\) \(\begin{array}{llllllll}15.9 & 216.7 & 0.1038 & 7.472 E 18 & 2.240 E 24 & 216.5 & 216.9 & .0583\end{array}\) \(16.0216 .70 .10217 .290 E 182.205 E 24216.5217 .0\). 0571 16.1216 .70 .10057 .111 E 182.170 E 24216.6217 .1 . 0560 \(16.2216 .60 .09906 .943 \mathrm{E} 182.138 \mathrm{E} 24216.7 \quad 217.2\). 0549 \(16.3216 .70 .09756 .773 E 182.104 E 24216.7217 .3\). 0537 16.4216 .70 .09596 .611 E 182.070 E 24216.8217 .4 . 0526 16.5216 .60 .09446 .473 E 182.038 E 24217.0217 .5 . 0517 \(16.6216 .70 .09296 .337 E 182.007 E 24217.1217 .6\). 0507 16.7216 .70 .09156 .207 E 181.975 E 24217.2217 .7 . 0498 \(16.8216 .60 .09006 .084 E 181.945 E 24217.3217 .8\). 0490 16.9216 .60 .08865 .958 E 181.915 E 24217.4217 .9 . 0481 17.0216 .70 .08735 .834 E 181.885 E 24217.5218 .0 . 0473 17.1216 .70 .08595 .730 E 181.856 E 24217.6218 .1 . 0466 \(17.2216 .60 .08465 .640 E 181.827 E 24217.7218 .3\). 0459 \(17.3216 .60 .08325 .545 \mathrm{E} 181.798 \mathrm{E} 24217.8218 .4 \quad .0453\) 17.4216 .70 .08195 .450 E 181.770 E 24217.9218 .4 . 0447 \(\begin{array}{llllllllllllll}17.5 & 216.6 & 0.0807 & 5.359 E 18 & 1.743 E 24 & 217.9 & 218.5 & .0442\end{array}\) \(17.6216 .60 .0795 \quad 5.273 \mathrm{E} 181.717 \mathrm{E} 24218.0218 .6\). 0436 17.7216 .70 .07835 .180 E 181.691 E 24218.1218 .7 . 0430 17.8216 .70 .07705 .074 E 181.663 E 24218.3218 .8 . 0422 \(17.9216 .60 .07584 .967 E 181.637 E 24218.4218 .9\). 0414 . 0379 6.3438E18 7.1401E18 7.3802E18 7.6125E18

\(18.0216 .6 \quad 0.07464 .862 \mathrm{E} 18 \quad 1.612 \mathrm{E} 24 \quad 218.5 \quad 219.0\) \(18.1216 .6 \quad 0.07344 .762 \mathrm{E} 181.587 \mathrm{E} 24218.6219 .1\) \(18.2216 .7 \quad 0.07234 .668 \mathrm{E} 181.562 \mathrm{E} 24218.7219 .2\)
 18.4216 .60 .07014 .506 E 181.515 E 24218.9219 .4 18.5216 .7 0.0690 4.432 E 181.491 E 24218.9219 .5 \(18.6216 .70 .06794 .362 E 181.468 \mathrm{E} 24219.0219 .7\) \(18.7216 .6 \quad 0.06694 .297 E 18 \quad 1.445 \mathrm{E} 24 \quad 219.1219 .8\) \(18.8 \quad 216.6 \quad 0.06584 .238 E 18 \quad 1.423 E 24219.2 \quad 219.9\) \(18.9216 .70 .06484 .182 E 181.401 \mathrm{E} 24219.2220 .0\) \(19.0216 .60 .06394 .123 E 181.380\) E24 219.3220 .1 \(19.1216 .6 \quad 0.06284 .055 \mathrm{E} 18 \quad 1.358 \mathrm{E} 24219.4220 .2\) \(19.2216 .6 \quad 0.0618 \quad 3.983 E 181.335 \mathrm{E} 24219.5 \quad 220.3\)
 19.4216 .50 .05993 .850 E 181.295 E 24219.7220 .5 . 0339 \(19.5216 .50 .0590 \quad 3.788 \mathrm{E} 181.275 \mathrm{E} 24219.7220 .6 \quad 0335\) \(\begin{array}{llllllllllllll}19.6 & 216.5 & 0.0581 & 3.724 E 18 & 1.256 E 24 & 219.8 & 220.7 & .0330\end{array}\) 19.7216 .50 .05723 .655 E 181.236 E 24219.9220 .8 . 0325 \(19.8216 .60 .0563 \quad 3.584 \mathrm{E} 18 \quad 1.217 \mathrm{E} 24220.0220 .9 \quad .0320\) \(19.9216 .60 .0555 \quad 3.515 \mathrm{E} 181.198 \mathrm{E} 24220.1221 .0 \quad .0316\) 20.0216 .70 .05463 .450 E 181.180 E 24220.2221 .1 . 0311 \(20.1216 .70 .05373 .387 E 181.162 \mathrm{E} 24220.3221 .2\). 0307 \(\begin{array}{llllllllllllllll}20.2 & 216.8 & 0.0529 & 3.326 E 18 & 1.144 E 24 & 220.4 & 221.3 & 0303\end{array}\) \(20.3216 .9 \quad 0.0521 \quad 3.267 \mathrm{E} 18 \quad 1.126 \mathrm{E} 24 \quad 220.5221 .4\) \(20.4217 .0 \quad 0.05133 .210 \mathrm{E} 181.108 \mathrm{E} 24220.6221 .5\) \(20.5217 .10 .05053 .154 E 181.091 E 24220.6221 .6\) \(20.6217 .20 .04973 .096 E 181.074 E 24220.7221 .7\) \(20.7217 .30 .04893 .035 E 181.057 E 24220.8221 .8\) \(20.8217 .4 \quad 0.04812 .978 \mathrm{E} 181.041 \mathrm{E} 24220.9221 .8\) \(20.9217 .50 .04742 .924 E 181.024 \mathrm{E} 24221.0221 .9\) 21.0217 .60 .04672 .875 E 181.009 E 24221.1222 .0 \(21.1217 .70 .04602 .825 \mathrm{E} 18 \quad 9.939 \mathrm{E} 23221.2222 .1\) \(21.2217 .80 .0452 \quad 2.767 \mathrm{E} 18\) 9.780E23 221.3222 .2 21.3217 .90 .04452 .704 E 189.621 E 23221.4222 .3 \(21.4218 .0 \quad 0.04382 .648 \mathrm{E} 18 \quad 9.473 \mathrm{E} 23221.5222 .4\) 21.5218 .10 .04312 .600 E 18 9.328E23 221.6222 .5 \(\begin{array}{llllllllll}21.6 & 218.2 & 0.0425 & 2.557 E 18 & 9.189 E 23 & 221.6 & 222.6 \quad 0250\end{array}\) 21.7218 .40 .04182 .514 E 18 9.050E23 \(221.7222 .7 \quad 0247\) \(21.8218 .40 .04122 .466 \mathrm{E} 188.909 \mathrm{E} 23221.8222 .8 \quad 0244\) 21.9218 .50 .04062 .419 E 188.775 E 23221.8222 .9 . 0241 22.0218 .60 .04002 .373 E 188.643 E 23221.9223 .0 . 0238 \(22.1218 .70 .03932 .327 E 188.511 \mathrm{E} 23222.0223 .1\). 0234 \(22.2218 .80 .03872 .281 E 188.379 E 23222.1223 .2\). 0231 \(22.3218 .9 \quad 0.03812 .234 E 188.247 E 23222.2223 .3\). 0227 \(22.4219 .0 \quad 0.0375 \quad 2.186 \mathrm{E} 18\) 8.115E23 222.3223 .4

0408 . 0373 6.3358E18 7.1130E18 7.3330E18 7.5535E18 \(040103676.3273 E 187.0850 \mathrm{E} 187.2850 \mathrm{E} 187.4945 \mathrm{E} 18\) 0394 . 03626.3176 E 187.0560 E 187.2370 E 187.4356 E 18 0388.0356 6.3068E18 7.0260E18 7.1890E18 7.3768E18 \(0383.03516 .2949 E 186.9950 E 187.1410 E 187.318\) IE18 \(0379.03456 .2818 E 18 \quad 6.9630 E 187.0930 E 187.2595 E 18\) .0374 . \(03406.2675 E 186.9300 E 187.0450 \mathrm{E} 187.2010 \mathrm{E} 18\) \(0370.03346 .2521 E 186.8960 E 186.9970 E 187.1426 E 18\) 0366.03296 .2356 E 186.8610 E 186.9490 E 187.0843 E 18 .0363 .03246 .2179 E 186.8250 E 186.9010 E 187.0261 E 18 0358 . \(03206.1990 E 186.7880 E 186.8530 E 186.9680 E 18\) 0354 . 0314 6.1790E18 6.7500E18 6.8050E18 6.9100E18 \(.03096 .1582 \mathrm{E} 186.7110 \mathrm{E} 18 \quad 6.7568 \mathrm{E} 186.8523 \mathrm{E} 18\) \(.03046 .1366 \mathrm{E} 18 \quad 6.6710 \mathrm{E} 18 \quad 6.7084 \mathrm{E} 186.7949 \mathrm{E} 18\) \(.03006 .1142 \mathrm{E} 18 \quad 6.6300 \mathrm{E} 18 \quad 6.6598 \mathrm{E} 186.7378 \mathrm{E} 18\) .02956 .0910 E 18 6 6880E18 6.6110 E 186.6810 E 18 \(.02916 .0670 E 18 \quad \overline{6} .5 \overline{5} \overline{0} E 186.5620 E 186.6245 E 18\) \(.02866 .0422 E 186.5010 E 186.5128 E 186.5683 E 18\) 02816.0166 E 186.4560 E 186.4634 E 186.5124 E 18 02785.9902 E 186.4100 E 186.4138 E 186.4568 E 18 .02735 .9630 E 186.3630 E 186.3640 E 186.4015 E 18 02695.9350 E 186.3150 E 186.3140 E 186.3465 E 18 \(02655.9064 E 18 \quad 6.2668 \mathrm{E} 186.2641 \mathrm{E} 186.2920 \mathrm{E} 18\) \(.02605 .8772 E 18 \quad 6.2184 E 18 \quad 6.2143 E 186.2380 E 18\) .02575 .8474 E 186.1698 E 186.1646 E 186.1845 E 18 \(.02535 .8170 E 18 \quad 6.1210 E 186.1150 E 186.1315 \mathrm{E} 18\) .02485 .7860 E 186.0720 E 186.0655 E 186.0790 E 18 .02455 .7544 E 186.0228 E 186.0161 E 18 6 6.0270 E 18 \(.02405 .7222 \mathrm{E} 185.9734 \mathrm{E} 18 \quad 5.9668 \mathrm{E} 18 \quad 5.9755 \mathrm{E} 18\) \(.02375 .6894 \mathrm{E} 18 \quad 5.9238 \mathrm{E} 185.9176 \mathrm{E} 18 \mathrm{5} .9245 \mathrm{E} 18\) .02345 .6560 E 18 5 .8740 E 18 5 .8685 E 18 5 .8740 E 18 02305.6220 E 18 5 .8240 E 18 5 .8195 E 18 5 .8240 E 18 02265.5874 E 18 5 .7741 E 185.7705 E 18 5 .7741 E 18 \(02235.5522 E 185.7243 E 185.7215 \mathrm{E} 185.7243 \mathrm{E} 18\) 02195.5164 E 185.6746 E 185.6725 E 18 5 .6746 E 18 02155.4800 E 185.6250 E 185.6235 E 18 5 .6250 E 18 02135.4430 E 185.5755 E 185.5745 E 18 5.5755E18 02095.4054 E 185.5261 E 185.5255 E 18 5 .5261E18 \(02065.3672 E 185.4768 E 185.4765 E 185.4768 \mathrm{E} 18\) 02035.3284 E 185.4276 E 185.4275 E 185.4276 E 18 02005.2890 E 18 5 .3785 E 185.3785 E 18 5 .3785 E 18 01965.2490 E 18 5 .3295 E 18 5 .3295 E 18 5 .3295 E 18 .01935 .2085 E 185.2805 E 185.2805 E 18 5 .2805E18 .01915 .1675 E 18 5.2315E18 5.2315 E 185.2315 E 18 . 0223 . 01885.1260 E 185.1825 E 185.1825 E 18 5 .1825 E 18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALT & T & P & COL. & DEN. & COL. & DEN. & T( & & T(. & P(.5) & P(.5) & & DEN. & Prof & iles & \\
\hline & & & H20 & & MIX & gas & & & IX & H20 & MIX & 9 LAT & 36 LAT & 43 & lat & 56 lat \\
\hline (KM) & (K) & (ATM) & (MOL & CM^2 & (MOL/ & CM^2) & (K & & K) & (ATM) & (ATM) & & (MOL/ & & & \\
\hline
\end{tabular}
22.5219 .10 .03692 .141 E 187.989 E 23222.4223 .6 . 0219 . 01845.0840 E 18 5.1335E18 5.1335E18 5.1335E18 22.6219 .20 .03642 .100 E 187.869 E 23222.5223 .6 . 0216 . 01825.0415 E 18 5.0845E18 5.0845 E 18 5 .0845 E 18 22.7219 .30 .03582 .060 E 187.749 E 23222.6223 .7 . 0213 . 01794.9985 E 18 5.0355E18 5.0355 E 18 5.0355E18
 22.9219 .50 .03471 .984 E 187.518 E 23222.8223 .9 . 0207 . 01734.9110 E 184.9375 E 184.9375 E 184.9375 E 18 \(23.0219 .60 .03421 .947 E 187.402 \mathrm{E} 23222.8224 .0\). 0205 . 01714 4.8665E18 4.8885E18 4.8885 E 18 4.8885E18 23.1219 .70 .03371 .910 E 187.286 E 23222.9224 .1 . 0202 . 0169 4.8215E18 4.8395E18 4.8395E18 4.8395E18 23.2219 .80 .03321 .875 E 18 7.176E23 223.0224 .2 . 0200 . 01664.7761 E 184.7905 E 18 4.7905E18 4.7905E18 23.3219 .90 .03271 .840 E 187.069 E 23223.1224 .3 . 0197 . 01634.7303 E 184.7415 E 184.7415 E 184.7415 E 18 \(23.4220 .00 .03221 .804 E 186.962 E 23223.2224 .4\). 0195 . 01614.6841 E 184.6925 E 184.6925 E 18 4.6925E18 23.5220 .10 .03171 .767 E 186.856 E 23223.3224 .5 . 0192 . 01594.6375 E 18 4.6435E18 4.6435E18 4.6435E18 23.6220 .20 .03121 .729 E 186.749 E 23223.4224 .7 . 0189 . 01564.5905 E 184.5945 E 184.5945 E 184.5945 E 18 23.7220 .30 .03071 .693 E 186.645 E 23223.5224 .8 . 0186 . 01544.5431 E 184.5455 E 184.5455 E 184.5455 E 18 23.8220 .40 .03021 .658 E 186.543 E 23223.6224 .8 . 0184 . 01514 4.4953E18 4.4965 E 18 4.4965E18 4.4965 E 18 23.9220 .50 .02981 .624 E 186.441 E 23223.7224 .9 . 0181 . 01494.4471 E 184.4475 E 184.4475 E 18 4 4475 E 18
 24.1220 .70 .02891 .560 E 186.250 E 23223.8225 .2 . 0176 . 01444 4.3495E18 4.3495 E 184.3495 E 184.3495 E 18 24.2220 .80 .02841 .529 E 186.155 E 23223.9225 .3 . 0174 . 01424.3004 E 184.3004 E 18 4.3004E184.3004E18 \(24.3220 .90 .02801 .499 E 186.060 E 23224.0225 .3\). 0172 . \(01404.2512 E 184.2512 E 184.2512 E 184.2512 E 18\) \(24.4221 .00 .02761 .470 E 185.965 E 23224.1225 .4\). 0169 . \(01384.2019 E 184.2019 E 184.2019 E 184.2019 E 18\) 24.5221 .10 .02711 .441 E 185.878 E 23224.2225 .6 . 0167 . 01364.1525 E 184.1525 E 184.1525 E 18 4.1525E18 \(24.6221 .20 .02671 .413 E 185.788 E 23224.3225 .7\). 0165 . 01334 4.1030E18 4.1030E18 4.103OE18 4.1030E18 \(24.7221 .30 .02631 .384 E 185.701 \mathrm{E} 23224.3225 .8\). 0163 . 01324.0534 E 184.0534 E 18 4.0534E18 4.0534E18 \(24.8221 .40 .02591 .354 E 185.615 E 23224.4225 .9\). 0161 . 01304.0037 E 184.0037 E 18 4.0037E184.0037E18 \(24.9221 .50 .02551 .323 E 185.530 E 23224.5226 .0\). 0158 . 01273.9539 E 183.9539 E 18 3.9539E18 3.9539 E 18 \(25.0221 .60 .02511 .292 E 185.445 E 23224.6226 .1\). 0156 . 01263.9040 E 183.9040 E 183.9040 E 183.9040 E 18 \(25.1221 .70 .02481 .261 E 185.361 E 23224.7226 .2\). 0154 . 01243.8540 E 183.8540 E 18 3.8540E18 3.8540 E 18 25.2221 .80 .02441 .232 E 185.282 E 23224.8226 .3 . 0151 . 01223.8046 E 18 3.8046E18 3.8046 E 18 3.8046E18 \(25.3221 .80 .02401 .204 E 185.203 E 23224.9226 .4\). 0149 . 01203.7558 E 18 3.7558E18 \(3.7558 E 183.7558 \mathrm{E} 18\) \(25.4221 .90 .02371 .178 E 185.124 E 23225.0226 .5\). 0147 . 01193.7076 E 18 3.7076E18 3.7076 E 18 3.7076E18 \(25.5222 .00 .02331 .155 E 185.048 E 23225.1226 .6\). 0146 . 01163.6600 E 183.6600 E 18 3.6600E18 3.6600E18 \(25.6222 .10 .02301 .133 E 184.973 E 23225.2226 .7\). 0143 . \(01153.6130 E 183.6130 E 183.6130 E 183.6130 E 18\) 25.7222 .20 .02261 .113 E 184.898 E 23225.3226 .8 . 0142 . 01133.5666 E 183.5666 E 18 3.5666E18 3.5666 E 18 \(25.8222 .30 .02231 .093 E 184.823 E 23225.3226 .9\). 0141 . 01113 3.5208E18 3.5208 E 18 3.5208E18 3.5208 E 18 25.9222 .40 .02191 .073 E 184.748 E 23225.4227 .0 .0139 . \(0110 \quad 3.4756 \mathrm{E} 18 \quad 3.4756 \mathrm{E} 18 \quad 3.4756 \mathrm{E} 18 \quad 3.4756 \mathrm{E} 18\) 26.0222 .50 .02161 .050 E 184.674 E 23225.5227 .1 .0137 . \(01083.4310 \mathrm{E} 183.4310 \mathrm{E} 183.4310 \mathrm{E} 18 \quad 3.4310 \mathrm{E} 18\) \(26.1222 .60 .02131 .028 E 184.606 E 23225.6227 .2\). 0136 . 0106 3.3870E18 \(3.3870 E 18 \quad 3.3870 E 18 \quad 3.3870 E 18\) \(26.2222 .70 .02091 .005 E 184.537 E 23225.7227 .3\). 0134 . 01043.3431 E 18 3.3431E18 \(3.3431 E 18 \quad 3.3431 E 18\) \(26.3222 .80 .02069 .824 E 174.469 \mathrm{E} 23\) 225.7 227.4 . 0132 . 0103 3.2993E18 \(3.2993 E 183.2993 E 18 \quad 3.2993 E 18\) 26.4222 .90 .02039 .596 E 174.401 E 23 225.8 227.5 . 0131 . 01023.2556 E 18 3.2556E18 3.2556 E 18 3.2556E18 \(26.5223 .00 .02009 .372 E 174.332 E 23225.9227 .5\). 0129 . 01003.2120 E 18 3.2120E18 \(3.2120 E 183.2120 \mathrm{E} 18\) 26.6223 .10 .01979 .169 E 174.268 E 23 226.0 227.5 . 0127 . 00993.1685 E 18 3.1685E18 3.1685 E 18 3.1685E18 26.7223 .20 .01948 .975 E 174.205 E 23226.1227 .6 . 0126 . 00973.1251 E 183.1251 E 18 3.1251E18 3.1251 E 18 \(26.8223 .30 .01918 .787 E 174.143 E 23226.2227 .7\). 0124 . 00953.0818 E 18 3.0818E18 3.0818 E 18 3.0818E18 \(26.9223 .40 .01888 .603 E 174.081 \mathrm{E} 23226.3227 .8\). 0122.00943 .0386 E 183.0386 E 18 3.0386E18 3.0386 E 18

27.0223 .50 .01868 .420 E 174.020 E 23226.4227 .9 . 0121 . 00932.9955 E 182.9955 E 182.9955 E 182.9955 E 18 27.1223 .60 .01838 .235 E 173.959 E 23226.4228 .0 .0119 . 00922.9525 E 182.9525 E 182.9525 E 182.9525 E 18 27.2223 .70 .01808 .046 E 173.898 E 23226.5228 .2 .0118 . 00902.9099 E 182.9099 E 182.9099 E 182.9099 E 18
 27.4223 .90 .01757 .691 E 173.784 E 23226.7228 .6 . 0115 . 0088 2.8259 E 182.8259 E 18 2.8259E18 2.8259 E 18 \(27.5224 .0 \quad 0.01727 .514 \mathrm{E} 173.728 \mathrm{E} 23226.7228 .8\). 0114 . 00862.7845 E 182.7845 E 18 2.7845E18 2.7845 E 18 27.6224 .10 .01697 .341 E 173.672 E 23226.8229 .0 . 0113 . 00842.7435 E 182.7435 E 182.7435 E 182.7435 E 18 27.7224 .20 .01677 .170 E 173.617 E 23226.9229 .3 . 0112 . 00832.7029 E 182.7029 E 18 2.7029E18 2.7029 E 18 \(27.8224 .30 .01646 .998 E 173.562 E 23227.0229 .5\). 0110 . 0082 2.6627E18 \(2.6627 E 182.6627 E 182.6627 E 18\) \(27.9224 .40 .01626 .826 E 173.508 \mathrm{E} 23227.0229 .8\). 0109 . 00812.6229 E 182.6229 E 182.6229 E 182.6229 E 18 28.0224 .50 .01596 .668 E 173.456 E 23227.1230 .1 . 0108 . 00802.5835 E 182.5835 E 182.5835 E 182.5835 E 18 \(28.1224 .60 .01576 .513 E 173.405 \mathrm{E} 23227.2230 .3\). 0106 . 00782.5445 E 182.5445 E 182.5445 E 182.5445 E 18 \(28.2224 .70 .01556 .363 E 173.353 E 23227.4230 .6\). 0104 . \(00772.5061 \mathrm{E} 182.5061 \mathrm{E} 182.5061 \mathrm{E} 182.5061 \mathrm{El8}\) 28.3224 .80 .01526 .219 E 17 3.303E23 227.5230 .9 . 0102 . 00762.4683 E 182.4683 E 182.4683 E 182.4683 E 18 \(28.4224 .90 .01506 .076 E 173.254 E 23 \quad 227.5231 .2\). 0100 . 0075 2.4311E18 2.4311 E 182.4311 E 182.4311 E 18 \(28.5225 .00 .01485 .931 E 173.204 \mathrm{E} 23227.5231 .5\). 0099 . 00742.3945 E 182.3945 E 182.3945 E 182.3945 E 18 28.6225 .10 .01465 .788 E 173.157 E 23227.5231 .8 . 0099 . 00732.3585 E 182.3585 E 182.3585 E 182.3585 E 18 \(28.7225 .20 .01435 .642 E 173.109 E 23227.5232 .1\). 0099 . \(00712.3231 E 182.3231 E 182.3231 E 182.3231 E 18\) \(28.8225 .30 .01415 .496 E 173.063 E 23227.5232 .3\). 0099 . 00712.2883 E 182.2883 E 182.2883 E 182.2883 E 18 \(28.9225 .40 .01395 .357 E 173.019 E 23227.5232 .6\). 0099 . \(00692.2541 E 182.2541 E 182.2541 E 182.2541 E 18\) \(29.0225 .50 .01375 .221 E 172.975 \mathrm{E} 23227.5232 .9\). 0099 . 00692.2205 E 182.2205 E 182.2205 E 182.2205 E 18 29.1225 .60 .01355 .086 E 172.930 E 23227.5233 .2 . 0099 . 00682.1875 E 182.1875 E 18 2.1875E18 2.1875E18


\section*{APPENDIX E}

\section*{TRANSMITTANCE AT SEA LEVEL}

We show the transmittance at sea-level. The plots are numbered from 1 to 45 covering \(10,000 \mu \mathrm{~m}\) to \(0.8 \mu \mathrm{~m}\).



































\section*{APPENDIX F}

\section*{TRANSMITTANCE AT FLIGHT ALTITUDE}

We show the transmittance at \(41,000 \mathrm{ft}\). The plots are numbered from 1 to 45 covering \(10,000 \mu \mathrm{~m}\) to \(0.8 \mu \mathrm{~m}\).








Wavelength ( \(\mu \mathrm{m}\) )


Wavelength ( \(\mu \mathrm{m}\) )
N
N
N
N



\section*{Wavelength ( \(\mu \mathrm{m}\) ) \\ 18.1818}






Wavelength ( \(\mu \mathrm{m}\) )
10.5263


\[
\text { Wavelength ( } \mu \mathrm{m} \text { ) }
\]
\[
\begin{aligned}
& \stackrel{1}{N} \\
& \underset{*}{2}
\end{aligned}
\]


Wavelength ( \(\mu \mathrm{m}\) )





Wavelength ( \(\mu \mathrm{m}\) )





\[
\begin{aligned}
& \text { Lambda } 1 \\
& \text { Lambda } 2 \\
& \text { Sampling } \\
& \text { Res(FWHM) } \\
& \text { Instr. Fn. } \\
& \text { Line Ctr } \\
& \text { Num. Pts. } \\
& \text { Ozone }
\end{aligned}
\]





\[
-
\]

\section*{APPENDIX G}

\section*{NEAR-IR BANDS AT MOUNTAINTOP ALTITUDE}

The following spectrum was produced by running ATRAN 15 times, producing data files that encompass the near-IR band from 1 to \(5 \mu \mathrm{~m}\). These files were appended to one file, and plotted as shown. The bands J, H , K. L, M are shown.

```

