$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ NEAR $ $ Near Earth Asteroid Rendevous DPTRAJ-ODP CRUISE LOCKFILE, VERSION 1.0 $ *** EME2000 COORDINATES *** $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ This file contains the text used to create near_lock_mathilde_V1.0.nio, $ the master DPTRAJ-ODP GIN file for NEAR radio science. $ $ Throughout this file, it is assumed MATHILDE will take the place of Pluto $ as the object with ID code #9. $ $ $ -- CHANGE HISTORY -- $ $ August 1997 Version 1.0 Jon D. Giorgini $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ IDPXIT = 0, $ LABL(1) = 'MATHILDE LOCKFILE V1.0 - AUGUST 1997', LABL(2) = 'NEAR RADIO SCIENCE', LABL(3) = ' ', SCNAME = 'NEAR', SCID = 93, REF50 = .FALSE., $ Reference epoch: .FALSE. => 2000, .TRUE. => 1950 $ $ J2000 is an inertial coordinate system defined by the planetary ephemeris $ and has a standard epoch of January 1.5, 2000, 2451545.0 Julian Date. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Astrodynamic constants from planetary & satellite ephemerides: $ $ The following astrodynamic constants are nominally obtained from the $ planetary and satellite ephemerides, unless explicitly specified in $ the GIN inputs. $ $ For these constants, the program GINUPDATE does the following: $ $ i) If the GIN inputs contain the values, it uses these. $ $ Otherwise: $ ii) If a satellite ephemeris is used, it gets the values from there. $ $ Otherwise: $ iii) It will read the values from the planet ephemeris, if used. $ $ In summary, all parameters are obtained from the assigned ephemerides; $ however, these values may be overwritten by GIN inputs. Two exceptions $ are AU and C: they cannot be overwritten by GIN inputs. $ $ $ Constants nominally obtained from the satellite ephemeris: $ $ GM of planet and satellites: GM, SATGM $ J2 & J3 of the planet: OBAJ(2), OBAJ(3) $ Planet pole right ascension, declination & rates & time: PLCOF $ $ The names on the satellite ephemeris file for Mars are: $ GM4, RADIUS, J402, J404, ZACPL4, ZDEPL4, DACPL4, $ DDEPL4, POLTIM, 401GM, 402GM, 400GM $ $ $ Constants nominally obtained from the planetary ephemeris: $ AU, BETREL, C, GAMREL, GM $ $ Note: Here GM(3) = GM0300 is calculated from GM0301 and EMRAT on the $ file by using GM0300 = EMRAT x GM301. $ $ Parameters gotten directly from the planetary ephemeris file: $ $ The values in DE403 are: $ $ AU = 0.1495978706910000D+09, $ Astronomical Unit. $ C = 0.2997924580000000D+06, $ Speed of light. $ EMRAT = 0.8130058500000000D+02, $ Earth-Moon GM ratio. $ NTSEC = 0.2062648062470964D+06, $ Arc seconds per radian. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ BEGIN DPTRAJ $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Astrodynamic Constants: $ $ 1) Davies, M. E., et al., "Report of the IAU/IAG/COSPAR Working Group $ on Cartographic Coordinates and Rotational Elements of the Planets $ and Satellites: 1994," Celestial Mechanics and Dynamical Astronomy, $ Vol. 63, 1996, pp. 127-148. $ $ 2) "The Introduction of the Improved IAU System of Astronomical $ Constants, Time Scales and Reference Frame into the Astronomical $ Almanac," Supplement to the Astronomical Almanac, Prepared $ Jointly by the Nautical Almanac Office, U.S. Observatory and $ H.M. Nautical Almanac Office, Royal Greenwich Observatory, 1983. $ $ 3) "Planetary Constants and Models," Mars Observer Project Document $ 642-321, JPL Document D-3444, November 1990. $ $ 4) Standish, E. M., et al., "JPL Planetary and Lunar Ephemerides, $ DE403/LE403", JPL IOM 314.10-127, May 22, 1995. $ $ Planetary radii (km): $ $ These are geometric equatorial radii of the planets. Note that there $ are also 'dynamic' radii used in the oblateness models specified by $ the variable 'ORB' which is independent of the geometric radii, 'RADI'. $ 'RADI' values are taken from Davies, except for Mars which is from the $ USGS model, as referenced by the Mars Project Planetary Constants Document. $ (Radii of planets 5, 6, 7, 8, correspond to a 1 bar surface). $ RADI( 1) = 0.243970D4, RADI( 2) = 0.605180D4, RADI( 3) = 0.637814D4, RADI( 4) = 0.339340D4, $ Mars - USGS model (See ref. 3). RADI( 5) = 0.714920D5, RADI( 6) = 0.602680D5, RADI( 7) = 0.255590D5, RADI( 8) = 0.247640D5, $ RADI( 9) = 0.119500D4, $ Pluto (NOT USED) RADI( 9) = 25.9D0 , $ MATHILDE (Peter Thomas, post-encounter) RADI(10) = 0.696000D6, RADI(11) = 0.173740D4, $ $ Planetary flatness: $ $ These values are calculated from data taken from Davies, except for $ Mars, which is from the USGS model, as referenced by the Mars Project $ Planetary Constants Document. $ $ The flatness factor is the geometric ellipticity of the body, equal $ to the ratio of the difference between the equatorial and polar $ radii to the equatorial radius. $ FLAT(1) = 11*0.0D0, $ Spherical model used for zero values. $ FLAT(3) = 0.003353642D0, $ Earth FLAT(4) = 0.005208300D0, $ Mars - USGS model (See ref. 3). FLAT(5) = 0.064874391D0, $ Jupiter FLAT(6) = 0.097962434D0, $ Saturn FLAT(7) = 0.022927344D0, $ Uranus FLAT(8) = 0.017081246D0, $ Neptune $ $ Gravitational constants -- from ephemeris DE403: $ $ GM( 1) =.2203208048641792D+05, $ GM( 2) =.3248585988264597D+06, $ GM( 3) =.3986004356081032D+06, $ Updated later (gravity model) $ GM( 4) =.4282831425806710D+05, $ Updated later (gravity model) $ GM( 5) =.1267127678577960D+09, $ GM( 6) =.3794062606113727D+08, $ GM( 7) =.5794549007071872D+07, $ GM( 8) =.6836534063879259D+07, $ GM( 9) =.9816008877070042D+03, $ Pluto (not used) GM( 9) = .0198D0, $ MATHILDE $ GM(10) =.1327124400179870D+12, $ GM(11) =.4902799107879768D+04, $ Updated in the gravity field model. $ $ BETREL = 1.0D0, $ Beta relativity parameter. $ GAMREL = 1.0D0, $ Gamma relativity parameter. LREL = 0.0D0, $ Relativity parameter. $ LOVENO(1,0,1) = 132*0.0D0, $ Zero out and initialize love numbers. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Oblateness model for Earth: $ $ Normalized Zonal, Sectorial & Tesseral harmonic coefficients. $ $ 1) B. D. Tapley, et al., "The JGM-3 Gravity Model," Annales Geophysicae, $ Supplement 1, C192, 1994. $ $ 2) R. S. Nerem, et al., "Gravity Model Development for TOPEX/Poseidon: $ Joint Gravity Models 1 and 2," Journal of Geophysical Research, $ paper number 94JC01376, 1994. $ $ 3) L. A. Cangahuala, et al., "TOPEX/Poseidon Precision Orbit Determination: $ Quick-Look Operations with SLR & GPS Data," Paper AAS 95-368 presented $ at AAS/AIAA Astrodynamics Specialist Conference, Halifax, Nova Scotia, $ Canada, 14-17 August 1995. $ $ An Earth GM value of 398600.4415 km3/s2 is used with the JGM-3 field. $ This value exceeds the DE403 value by 0.005892 km3/s2. $ $ The reference epoch for the J2, C21, S21 values was 01-JAN-1986. $ The following rates on J2, C21, S21 were applied: $ $ J2 rate = -1.16275535D-11 per year $ C21 rate = -1.3D-11 per year $ S21 rate = 1.1D-11 per year $ $ The values for J2, C21, S21 are for an epoch of 06-NOV-1996. $ OBF(1,2) = 'EARTH',8,0,8, $ 8 x 8 field. OBD(2) = 9.24649D5, $ Distance to end oblateness calculations(km). OBR(2) = 6378.1363D0, $ Gravitational equatorial mean radius (km). OBNORM(2) = .TRUE., $ Normalized harmonics. $ GM( 3) = 3.986004415D+5, $ Earth GM value in km3/s2. $ $ Zero out and initialize the harmonic coefficient array: $ OBXJ(1,1) = 15*0.0D0, OBXC(1,1,1) = 64*0.0D0, OBXS(1,1,1) = 64*0.0D0, $ $ The truncated (8x8) JGM-3 geopotential: $ OBXJ(1,1) = .000000000000D+00, OBXJ(2,1) = .484165249330D-03, OBXJ(3,1) = -.957170590888D-06, OBXJ(4,1) = -.539777068357D-06, OBXJ(5,1) = -.686589879865D-07, OBXJ(6,1) = .149671561786D-06, OBXJ(7,1) = -.907229416432D-07, OBXJ(8,1) = -.491180031747D-07, $ OBXC(1,1,1) = .000000000000D+00, OBXS(1,1,1) = .000000000000D+00, OBXC(2,1,1) = -.327998640000D-09, OBXS(2,1,1) = .131459710000D-08, OBXC(2,2,1) = .243926074866D-05, OBXS(2,2,1) = -.140026639759D-05, OBXC(3,1,1) = .203013720555D-05, OBXS(3,1,1) = .248130798256D-06, OBXC(3,2,1) = .904706341273D-06, OBXS(3,2,1) = -.618922846478D-06, OBXC(3,3,1) = .721144939823D-06, OBXS(3,3,1) = .141420398474D-05, OBXC(4,1,1) = -.536243554299D-06, OBXS(4,1,1) = -.473772370616D-06, OBXC(4,2,1) = .350670156459D-06, OBXS(4,2,1) = .662571345943D-06, OBXC(4,3,1) = .990868905774D-06, OBXS(4,3,1) = -.200987354847D-06, OBXC(4,4,1) = -.188481367425D-06, OBXS(4,4,1) = .308848036904D-06, OBXC(5,1,1) = -.627273696977D-07, OBXS(5,1,1) = -.941946321344D-07, OBXC(5,2,1) = .652459102764D-06, OBXS(5,2,1) = -.323334352444D-06, OBXC(5,3,1) = -.451837048088D-06, OBXS(5,3,1) = -.214954193464D-06, OBXC(5,4,1) = -.295123393022D-06, OBXS(5,4,1) = .497414272309D-07, OBXC(5,5,1) = .174831577700D-06, OBXS(5,5,1) = -.669392937249D-06, OBXC(6,1,1) = -.761035804073D-07, OBXS(6,1,1) = .268998189326D-07, OBXC(6,2,1) = .483274721249D-07, OBXS(6,2,1) = -.373815919444D-06, OBXC(6,3,1) = .570209657580D-07, OBXS(6,3,1) = .888947380083D-08, OBXC(6,4,1) = -.862280326198D-07, OBXS(6,4,1) = -.471405112321D-06, OBXC(6,5,1) = -.267112271720D-06, OBXS(6,5,1) = -.536410164664D-06, OBXC(6,6,1) = .950165183386D-08, OBXS(6,6,1) = -.237261478895D-06, OBXC(7,1,1) = .280286522037D-06, OBXS(7,1,1) = .947773178133D-07, OBXC(7,2,1) = .329760227424D-06, OBXS(7,2,1) = .931936968310D-07, OBXC(7,3,1) = .250501526750D-06, OBXS(7,3,1) = -.217320108453D-06, OBXC(7,4,1) = -.275540963074D-06, OBXS(7,4,1) = -.124141512485D-06, OBXC(7,5,1) = .164400381464D-08, OBXS(7,5,1) = .180753352335D-07, OBXC(7,6,1) = -.358842633079D-06, OBXS(7,6,1) = .151778084434D-06, OBXC(7,7,1) = .137951705641D-08, OBXS(7,7,1) = .241285940808D-07, OBXC(8,1,1) = .233337516872D-07, OBXS(8,1,1) = .584992749394D-07, OBXC(8,2,1) = .800706639316D-07, OBXS(8,2,1) = .655185590975D-07, OBXC(8,3,1) = -.192517643314D-07, OBXS(8,3,1) = -.862858365342D-07, OBXC(8,4,1) = -.244358064393D-06, OBXS(8,4,1) = .698570748504D-07, OBXC(8,5,1) = -.254984100103D-07, OBXS(8,5,1) = .890902974946D-07, OBXC(8,6,1) = -.658593538644D-07, OBXS(8,6,1) = .308920641580D-06, OBXC(8,7,1) = .672627018487D-07, OBXS(8,7,1) = .748131967687D-07, OBXC(8,8,1) = -.123970613955D-06, OBXS(8,8,1) = .120441006688D-06, $ $ Love number for Earth: $ $ 1) Global Earth Physics - A Handbook of Physical Constants, $ AGU Reference Shelf 1, American Geophysical Union, 1995. $ $ See the section by Charles F. Yoder (JPL): $ "Astrometric and Geodetic Properties of Earth and the Solar System" $ $ 2) Merit Standard from D. N. Yuan, June 5, 1992. $ LOVENO(2,0,3) = 0.2990D0, LOVENO(2,1,3) = 0.3000D0, LOVENO(2,2,3) = 0.3020D0, LOVENO(3,0,3) = 0.0930D0, LOVENO(3,1,3) = 0.0930D0, LOVENO(3,2,3) = 0.0930D0, LOVENO(3,3,3) = 0.0940D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Oblateness model for the Moon: $ $ Normalized Zonal, Sectorial & Tesseral harmonic coefficients. $ $ LUN60D: 60th degree and order lunar gravity field based upon Lunar $ Orbiters I through V and Apollo 15 and 16 subsatellites. $ $ The reference for this gravity field is: $ $ 1) A. S. Konopliv, W. L. Sjogren, R. N. Wimberly, R. A. Cook, and $ V. Alwar, "A High Resolution Lunar Gravity Field and Predicted $ Orbit Behavior," paper AAS 93-622 presented at AAS/AIAA Astrodynamics $ Specialist Conference, Victoria, B.C., Canada, August 16-19, 1993. $ $ A lunar GM value of 4902.797814 km3/s2 is used with the LUN60D field. $ This value is less than the DE403 value by 0.001294 km3/s2. $ $ The harmonic coefficients below are normalized and use an equatorial $ radius for the Moon of 1738.0 km. $ OBF(1,3) = 'MOON',8,0,8, $ 8 x 8 field. OBD(3) = 6.6183D4, $ Distance to end oblateness calculations (km). OBR(3) = 1738.0D0, $ Gravitational equatorial mean radius (km). OBNORM(3) = .TRUE., $ Normalized harmonics. $ GM(11) = 4902.797814D0, $ Moon GM value in km3/s2. $ $ Zero out and initialize the harmonic coefficient array: $ OBXJ(1,2) = 15*0.0D0, OBXC(1,1,2) = 64*0.0D0, OBXS(1,1,2) = 64*0.0D0, $ $ The truncated (8x8) LUN60D potential: $ OBXJ(1,2) = .000000000000D+00, OBXJ(2,2) = .911441850621D-04, OBXJ(3,2) = .311902819637D-05, OBXJ(4,2) = -.307835221987D-05, OBXJ(5,2) = .769368830934D-06, OBXJ(6,2) = -.420247761012D-05, OBXJ(7,2) = -.555725061234D-05, OBXJ(8,2) = -.258213200841D-05, $ OBXC(1,1,2) = .000000000000D+00, OBXS(1,1,2) = .000000000000D+00, OBXC(2,1,2) = -.251087450783D-06, OBXS(2,1,2) = .189247705893D-06, OBXC(2,2,2) = .346584314967D-04, OBXS(2,2,2) = -.105183661563D-06, OBXC(3,1,2) = .264955051975D-04, OBXS(3,1,2) = .543526879871D-05, OBXC(3,2,2) = .143205732800D-04, OBXS(3,2,2) = .481901453019D-05, OBXC(3,3,2) = .123281980475D-04, OBXS(3,3,2) = -.151614566810D-05, OBXC(4,1,2) = -.601000708063D-05, OBXS(4,1,2) = .144154958330D-05, OBXC(4,2,2) = -.756048899234D-05, OBXS(4,2,2) = -.660908653420D-05, OBXC(4,3,2) = -.157205412560D-05, OBXS(4,3,2) = -.134147521823D-04, OBXC(4,4,2) = -.606603204952D-05, OBXS(4,4,2) = .356365436446D-05, OBXC(5,1,2) = -.993581295251D-06, OBXS(5,1,2) = -.409939311978D-05, OBXC(5,2,2) = .430063826944D-05, OBXS(5,2,2) = .121711990315D-05, OBXC(5,3,2) = .902472365556D-06, OBXS(5,3,2) = .850307049372D-05, OBXC(5,4,2) = .276860468026D-05, OBXS(5,4,2) = .552557057068D-07, OBXC(5,5,2) = .322944662780D-05, OBXS(5,5,2) = -.222204702132D-05, OBXC(6,1,2) = .196677219382D-05, OBXS(6,1,2) = -.317395782132D-05, OBXC(6,2,2) = -.416720046585D-05, OBXS(6,2,2) = -.211311689024D-05, OBXC(6,3,2) = -.316953232988D-05, OBXS(6,3,2) = -.376535765877D-05, OBXC(6,4,2) = -.180602664212D-06, OBXS(6,4,2) = -.358296927763D-05, OBXC(6,5,2) = .145132004062D-05, OBXS(6,5,2) = -.103266424334D-04, OBXC(6,6,2) = -.482864333845D-05, OBXS(6,6,2) = .644590137048D-05, OBXC(7,1,2) = .728684437826D-05, OBXS(7,1,2) = -.158503139890D-06, OBXC(7,2,2) = -.100389024426D-05, OBXS(7,2,2) = .285458316571D-05, OBXC(7,3,2) = .287132227683D-06, OBXS(7,3,2) = .217926631287D-05, OBXC(7,4,2) = -.112896199507D-05, OBXS(7,4,2) = .118350939045D-05, OBXC(7,5,2) = .460145803221D-06, OBXS(7,5,2) = .438750435056D-07, OBXC(7,6,2) = -.121628912845D-05, OBXS(7,6,2) = .976728544757D-06, OBXC(7,7,2) = -.164471397816D-05, OBXS(7,7,2) = -.607247211380D-06, OBXC(8,1,2) = .283644952155D-06, OBXS(8,1,2) = .130269495198D-05, OBXC(8,2,2) = .359236596796D-05, OBXS(8,2,2) = .192706617599D-05, OBXC(8,3,2) = -.157578446767D-05, OBXS(8,3,2) = .410590400224D-06, OBXC(8,4,2) = .397422040228D-05, OBXS(8,4,2) = -.614403578567D-06, OBXC(8,5,2) = -.112498071178D-05, OBXS(8,5,2) = .228062269000D-05, OBXC(8,6,2) = -.243673445826D-05, OBXS(8,6,2) = -.370214046613D-06, OBXC(8,7,2) = -.116915198183D-05, OBXS(8,7,2) = .352222836341D-05, OBXC(8,8,2) = -.259980412308D-05, OBXS(8,8,2) = .974066807776D-06, $ $ Love number for the Moon: $ $ 1) Global Earth Physics - A Handbook of Physical Constants, $ AGU Reference Shelf 1, American Geophysical Union, 1995. $ $ See the section by Charles F. Yoder (JPL): $ "Astrometric and Geodetic Properties of Earth and the Solar System" $ $ 2) Ferrari, A. J., et al., "Geophysical Parameters of the Earth-Moon $ System," Journal of Geophysical Research, Vol. 85, pp. 3939-3951. $ LOVENO(2,0,11) = 0.0302D0, $ +/- 0.0012 LOVENO(2,1,11) = 0.0302D0, $ From Ferrari: 0.022 +/- 0.013 LOVENO(2,2,11) = 0.0302D0, $ $ Earth-Moon indirect oblateness: $ IOBF = 1, $ 1 => On, 0 => Off $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Oblateness model for Mars: $ $ Normalized Zonal, Sectorial & Tesseral harmonic coefficients. $ $ The following is the "header" information which was on the original $ gravity coefficient file obtained from Alex Konopliv: $ $ JPL Gravity field MARS50C $ From Viking 1,2 and Mariner 9 data $ $ Alex Konopliv $ Jet Propulsion Laboratory $ ask@krait.jpl.nasa.gov $ (818) 354-6105 $ $ 1) Alexander S. Konopliv, William L. Sjogren, "The JPL Mars Gravity $ Field, Mars50c, Based Upon Viking and Mariner 9 Doppler Tracking $ Data", JPL Publication 95-5, February 1995. $ $ 2) Davies, M. E., et al., "Report of the IAU/IAG/COSPAR Working Group $ on Cartographic Coordinates and Rotational Elements of the Planets $ and Satellites: 1991," Celestial Mechanics and Dynamical Astronomy, $ Vol. 53, 1992, pp. 377-397. $ $ The following paragraphs from the above reference describe some of $ the parameters used in the gravity field generation. $ $ The International Astronomical Union (IAU) 1991 (Davies et al., $ 1992) rotational constants specified the orientation of Mars and, $ hence, the gravity field. The JPL DE200 planetary ephemeris $ (Standish, 1990) was used for calculation of the planetary point $ mass perturbations. The MAR027 Phobos and Deimos satellite ephemeris $ covered the Viking data time span for the calculation of the point $ mass accelerations of Phobos and Deimos on the spacecraft, but no $ forces on Mariner 9 were included due to Phobos and Deimos. MAR027 $ is a fit of the observations of Phobos and Deimos to the Sinclair/Morley $ theory. $ $ For the Doppler observables, averaged seasonal troposphere $ calibrations as given by Chao (1972) were applied. Any observations $ below 10-degrees elevation were deleted because of unmodeled troposphere $ effects. Daily UT1 and polar motion values from the JPL Space91 $ solution (Gross, 1992) were included and DSN station locations are $ in the International Earth Rotation Service (IERS) reference frame $ as given by Folkner (1991) with the AMO-2 plate motion model and $ solid-Earth tides corrections added. Ideally, future solutions will $ include the frame tie rotational offset between the IERS and planetary $ ephemeris frames, solve for the Mars ephemeris, or use an ephemeris $ such as DE400 in the radio frame. $ $ Planetary constants related to the gravity field: $ $ The following are the ODP Mars rotational parameters namelist inputs $ which are consistent with the Mars50c gravity field. They are from the $ 1991 IAU/IAG/COSPAR working group report on coordinates and rotational $ elements. $ $ Size of gravity field to activate in trajectory calculations: $ OBF(1,1) = 'MARS',8,0,8, $ Truncated to an 8 x 8 field. $ $ Distance within which oblateness calculations begin (km): $ OBD(1) = 5.77232D5, $ $ Gravitational equatorial mean radius (km): $ OBR(1) = 3394.2D0, $ $ Mars GM associated with gravity field (km3/s2): $ Note: This value may overwrite, or be overwritten by, the values on $ the planetary or satellite ephemeris files. $ GM( 4) = 42828.370371D0, $ $ Are the spherical harmonics normalized or unnormalized: $ OBNORM(1) =.TRUE., $ Normalized harmonics $ $ Zero out and initialize the harmonic coefficient array: $ OBAJ(1) = 50*0.0D0, OBAC(1,1) = 2500*0.0D0, OBAS(1,1) = 2500*0.0D0, $ $ Zonal harmonics (normalized): $ OBAJ(1) = .000000000000D+00, OBAJ(2) = .875919760273D-03, OBAJ(3) = .119340679166D-04, OBAJ(4) = -.515052493229D-05, OBAJ(5) = .182402897065D-05, OBAJ(6) = -.145665966143D-05, OBAJ(7) = -.840128810448D-06, OBAJ(8) = -.498316049196D-06, $ $ Sectorial & Tesseral harmonic coefficients (normalized): $ $ OBAC & OBAS are stored on the GIN file as OBACS. $ OBAC(1,1) = .000000000000D+00, OBAS(1,1) = .000000000000D+00, OBAC(2,1) = .132033468405D-07, OBAS(2,1) = .675285290457D-09, OBAC(2,2) = -.843122022711D-04, OBAS(2,2) = .496785329690D-04, OBAC(3,1) = .386567700057D-05, OBAS(3,1) = .252774247650D-04, OBAC(3,2) = -.159257903505D-04, OBAS(3,2) = .846687289437D-05, OBAC(3,3) = .354141266874D-04, OBAS(3,3) = .251996626619D-04, OBAC(4,1) = .423920765688D-05, OBAS(4,1) = .374755584188D-05, OBAC(4,2) = -.111646822443D-05, OBAS(4,2) = -.896339096830D-05, OBAC(4,3) = .651418723273D-05, OBAS(4,3) = -.272352421181D-06, OBAC(4,4) = .113002982991D-06, OBAS(4,4) = -.128953895406D-04, OBAC(5,1) = .483319737757D-06, OBAS(5,1) = .209711155235D-05, OBAC(5,2) = -.424950879878D-05, OBAS(5,2) = -.122480912838D-05, OBAC(5,3) = .330314698123D-05, OBAS(5,3) = .254191256762D-06, OBAC(5,4) = -.468758582735D-05, OBAS(5,4) = -.332592263843D-05, OBAC(5,5) = -.442180487607D-05, OBAS(5,5) = .383605422433D-05, OBAC(6,1) = .189292146731D-05, OBAS(6,1) = -.162575855711D-05, OBAC(6,2) = .952881708647D-06, OBAS(6,2) = .161247203944D-05, OBAC(6,3) = .951313518098D-06, OBAS(6,3) = .244050571795D-06, OBAC(6,4) = .103496966548D-05, OBAS(6,4) = .265185330216D-05, OBAC(6,5) = .178175240614D-05, OBAS(6,5) = .162897120977D-05, OBAC(6,6) = .278529844665D-05, OBAS(6,6) = .785346403849D-06, OBAC(7,1) = .114392658047D-05, OBAS(7,1) = -.121424715130D-06, OBAC(7,2) = .279913674214D-05, OBAS(7,2) = -.731916050571D-06, OBAC(7,3) = .840389648008D-06, OBAS(7,3) = -.423723215581D-06, OBAC(7,4) = .239819519371D-05, OBAS(7,4) = -.525983697776D-06, OBAC(7,5) = -.308772049354D-06, OBAS(7,5) = -.133474272819D-05, OBAC(7,6) = -.572301952896D-06, OBAS(7,6) = -.193627126643D-05, OBAC(7,7) = .419198548050D-06, OBAS(7,7) = -.177122313587D-05, OBAC(8,1) = .202856025184D-06, OBAS(8,1) = .626151101085D-06, OBAC(8,2) = .166759972810D-05, OBAS(8,2) = .659128506006D-06, OBAC(8,3) = -.108712385793D-05, OBAS(8,3) = -.132729727828D-05, OBAC(8,4) = .162651101420D-05, OBAS(8,4) = .415430115159D-07, OBAC(8,5) = -.279554256497D-05, OBAS(8,5) = -.162629432881D-05, OBAC(8,6) = -.100692473264D-05, OBAS(8,6) = -.176741453509D-05, OBAC(8,7) = -.493709063200D-06, OBAS(8,7) = .165618103486D-05, OBAC(8,8) = -.306068555105D-06, OBAS(8,8) = -.263871691654D-06, $ $ Love number for Mars: $ $ 1) Global Earth Physics - A Handbook of Physical Constants, $ AGU Reference Shelf 1, American Geophysical Union, 1995. $ $ See the section by Charles F. Yoder (JPL): $ "Astrometric and Geodetic Properties of Earth and the Solar System" $ $ These values are based on a planetary (Mars) structure model: $ LOVENO(2,0,4) = 0.1400D0, LOVENO(2,1,4) = 0.1400D0, LOVENO(2,2,4) = 0.1400D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Resonant harmonics: $ $ This model may be used to input (and solve for) harmonic terms higher than $ the gravity field specified -- e.g. for harmonics which may be large due $ to gravity field resonance. $ $ For example, suppose one was using a 20x20 gravity field (defined in OBF), $ and there should be gravity resonance at this orbit around the 51st $ harmonic order. One may set: $ $ RESNAM(1) = '4J51', 4C51_50', $ $ and input the appropriate nominal values in RESJCS. $ These parameters may also be estimated using the usual naming convention $ for gravity harmonic partials. $ RESNAM( 1) = 20*' ', RESJCS( 1) = 20*0.0D0, $ $ Lumped sum gravity parameters: $ $ This model allows one to generate a partial (LSGM?) for a lumped sum $ gravity field: $ $ LSGMD = d/dJi(dr/dtdt) * DELJi + d/dJi(dr/dtdt) * DELCnm $ $ The partial is specified by the user inputting values for the DELJi, $ DELCnm, DELSnm for use in the above equation, through the GIN inputs $ DELJ(i), DELC(i,j), DELS(i,j). $ $ NOTE: This model has no effect on the trajectory. It just defines how $ to compute a partial. One cannot iterate on the estimated value $ for LSGMD. Therefore its usefulness is very limited. It was put $ into the ODP at the request of section 335(?) for study purposes. $ $ The DELC & DELS parameters are stored in the GIN file as DELCS. $ DELJ(1) = 50*0.0D0, DELC(1,1) = 2500*0.0D0, DELS(1,1) = 2500*0.0D0, DELRES(1) = 20*0.0D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Coordinate transformation data: $ $ For precession values (J2000 coordinate transformation): $ $ 1) J. H. Lieske et al, "Expressions for the Precession Quantities $ Based Upon the IAU (1976) System of Astronomical Constants", $ Table 5, Astronomy & Astrophysics, Vol. 58, 1977. $ $ 2) J. H. Lieske, 'Precession Matrix Based on IAU (1976) System of $ Astronomical Constants," Astronomy & Astrophysics, Vol. 73, $ pp. 282-284, 1979. $ $ For obliquity values: $ $ 3) The Astronomical Almanac for the Year 1996, Page B18. $ Units (C=Century): ', '/C, '/(C**2), '/(C**3) $ $ For sidereal values: $ $ 4) T. D. Moyer, "Proposed Changes to ODP Transformation Between $ Body-Fixed and Space-Fixed Coordinates for the Planets and $ the Sun," JPL EM 314-271, June 16, 1982. $ $ For north pole & prime meridian directions: $ $ 5) Davies, M. E., et al., "Report of the IAU/IAG/COSPAR Working Group $ on Cartographic Coordinates and Rotational Elements of the Planets $ and Satellites: 1994," Celestial Mechanics and Dynamical Astronomy, $ Vol. 63, 1996, pp. 127-148. $ $ Coefficients for Earth precession polynomials: $ PRECES(1,1) = 2306.2181D0, 0.301880D0, 0.017998D0, $ ZETA(A) 2004.3109D0, -0.426650D0, -0.041833D0, $ THETA(A) 2306.2181D0, 1.094680D0, 0.018203D0, $ Z(A) $ OBLQTY(1) = 84381.45000D0, -46.81500D0, -0.00060D0, 0.00181D0, $ $ Coefficients for Earth mean sidereal time polynomials: $ SIDERL(1) = 67310.54841D0, 3.164400184812866D9, 0.093104D0, -0.620D-5, $ $ Interpolate the Earth's nutation from the planetary ephemeris: $ (.TRUE. => compute values) $ NUTCMP = .FALSE., $ $ If NUTCMP is TRUE, set the following parameters: $ NFUND( 1, 1) = 20*0.0D0, NUTAMP(1,1,1) = 424*0.0D0, NUTARG( 1, 1) = 530*0, $ $ North pole and prime meridian direction of the planets and Sun. $ The sets of 'PLCOF's below mean the following: $ $ 1,1 RA of mean North Pole at January 1.5, 2000 in EME2000, degrees. $ 2,1 RA DOT, same epoch as above, degree/Julian century. $ 1,2 DEC of mean North Pole at January 1.5, 2000 in EME2000, degrees. $ 2,2 DEC DOT, same epoch as above, degree/Julian century. $ 1,3 Angle from the ascending node to planet prime meridian, degrees. $ 2,3 Mean sidereal rotation rate, degree/day. $ PLREF(1) = 9*0.0D0, $ Seconds past the reference epoch for PLCOF. PLCOF(1,1,1) = 54*0.D0, $ Initialize 2x3x9 array $ PLCOF(1,1,1) = 281.01D0, $ Mercury PLCOF(2,1,1) =-0.033D0, PLCOF(1,2,1) = 61.450D0, PLCOF(2,2,1) =-0.005D0, PLCOF(1,3,1) = 329.68D0, PLCOF(2,3,1) = 6.1385025D0, $ PLCOF(1,1,2) = 272.76D0, $ Venus PLCOF(2,1,2) = 0.0D0, PLCOF(1,2,2) = 67.16D0, PLCOF(2,2,2) = 0.0D0, PLCOF(1,3,2) = 160.20D0, PLCOF(2,3,2) =-1.4813688D0, $ PLCOF(1,1,3) = 317.681D0, $ Mars PLCOF(2,1,3) =-0.108D0, PLCOF(1,2,3) = 52.886D0, PLCOF(2,2,3) =-0.061D0, PLCOF(1,3,3) = 176.901D0, PLCOF(2,3,3) = 350.8919830D0, $ PLCOF(1,1,4) = 268.05D0, $ Jupiter PLCOF(2,1,4) =-0.009D0, PLCOF(1,2,4) = 64.49D0, PLCOF(2,2,4) = 0.003D0, PLCOF(1,3,4) = 284.95D0, PLCOF(2,3,4) = 870.5360000D0, $ PLCOF(1,1,5) = 40.589D0, $ Saturn PLCOF(2,1,5) =-0.036D0, PLCOF(1,2,5) = 83.537D0, PLCOF(2,2,5) =-0.004D0, PLCOF(1,3,5) = 38.90D0, PLCOF(2,3,5) = 810.7939024D0, $ PLCOF(1,1,6) = 257.311D0, $ Uranus PLCOF(2,1,6) = 0.0D0, PLCOF(1,2,6) =-15.175D0, PLCOF(2,2,6) = 0.0D0, PLCOF(1,3,6) = 203.81D0, PLCOF(2,3,6) =-501.1600928D0, $ PLCOF(1,1,7) = 299.36D0, $ Neptune (trigonometric terms ignored) PLCOF(2,1,7) = 0.0D0, PLCOF(1,2,7) = 43.46D0, PLCOF(2,2,7) = 0.0D0, PLCOF(1,3,7) = 253.18D0, PLCOF(2,3,7) = 536.3128492D0, $ $ PLCOF(1,1,8) = 313.02D0, $ Pluto (NOT USED) $ PLCOF(2,1,8) = 0.0D0, $ PLCOF(1,2,8) = 9.09D0, $ PLCOF(2,2,8) = 0.0D0, $ PLCOF(1,3,8) = 236.77D0, $ PLCOF(2,3,8) = -56.3623195D0, $ PLCOF(1,1,9) = 286.13D0, $ Sol PLCOF(2,1,9) = 0.0D0, PLCOF(1,2,9) = 63.87D0, PLCOF(2,2,9) = 0.0D0, PLCOF(1,3,9) = 84.10D0, PLCOF(2,3,9) = 14.1844000D0, $ $ North pole and prime meridian direction of the Moon. There are $ additional terms in the model which are not implemented in ODP. $ LUNREF = 0.0D0, $ The reference epoch is J2000. $ LUNCOF(1,1) = 269.9949D0, $ RA, constant term LUNCOF(2,1) = 0.0031D0, $ RA, linear term LUNCOF(3,1) = 0.0D0, $ RA, quadratic term LUNCOF(4,1) = -3.8787D0, $ RA, coefficient of SIN(E1) LUNCOF(5,1) = -0.1204D0, $ RA, coefficient of SIN(E2) LUNCOF(6,1) = 0.0700D0, $ RA, coefficient of SIN(E3) LUNCOF(7,1) = -0.0172D0, $ RA, coefficient of SIN(E4) LUNCOF(8,1) = 0.0D0, $ RA, coefficient of SIN(E5) $ LUNCOF(1,2) = 66.5392D0, $ DEC, constant term LUNCOF(2,2) = 0.013D0, $ DEC, linear term LUNCOF(3,2) = 0.0D0, $ DEC, quadratic term LUNCOF(4,2) = 1.5419D0, $ DEC, coefficient of COS(E1) LUNCOF(5,2) = 0.0239D0, $ DEC, coefficient of COS(E2) LUNCOF(6,2) = -0.0278D0, $ DEC, coefficient of COS(E3) LUNCOF(7,2) = 0.0068D0, $ DEC, coefficient of COS(E4) LUNCOF(8,2) = 0.0D0, $ DEC, coefficient of COS(E5) $ LUNCOF(1,3) = 38.3213D0, $ W, constant term LUNCOF(2,3) = 13.17635815D0,$ W, linear term LUNCOF(3,3) = 0.0D0, $ W, quadratic term LUNCOF(4,3) = 3.5610D0, $ W, coefficient of SIN(E1) LUNCOF(5,3) = 0.1208D0, $ W, coefficient of SIN(E2) LUNCOF(6,3) = -0.0642D0, $ W, coefficient of SIN(E3) LUNCOF(7,3) = 0.0158D0, $ W, coefficient of SIN(E4) LUNCOF(8,3) = 0.0252D0, $ W, coefficient of SIN(E5) $ LUNCF2(1,1) = 125.045D0, $ E1, constant term LUNCF2(2,1) = -0.0529921D0, $ E1, linear term LUNCF2(3,1) = 0.0D0, $ E1, quadratic term $ LUNCF2(1,2) = 250.089D0, $ E2, constant term LUNCF2(2,2) = -0.1059842D0, $ E2, linear term LUNCF2(3,2) = 0.0D0, $ E2, quadratic term $ LUNCF2(1,3) = 260.008D0, $ E3, constant term LUNCF2(2,3) = -13.0120009D0,$ E3, linear term LUNCF2(3,3) = 0.0D0, $ E3, quadratic term $ LUNCF2(1,4) = 176.625D0, $ E4, constant term LUNCF2(2,4) = 13.3407154D0, $ E4, linear term LUNCF2(3,4) = 0.0D0, $ E4, quadratic term $ LUNCF2(1,5) = 357.529D0, $ E5, constant term LUNCF2(2,5) = -0.9856003D0, $ E5, linear term LUNCF2(3,5) = 0.0D0, $ E5, quadratic term $ $ Phobos and Deimos RA, DEC and W angle data: $ MSREF( 1) = 0.0D0, 0.0D0, $ Reference epochs are J2000. $ MSCOF(1,1,1) = 317.68D0, -0.108D0, 0.0D0, $ RA 1.79D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, MSCOF(1,2,1) = 52.90D0, -0.061D0, 0.0D0, $ DEC -1.080D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, MSCOF(1,3,1) = 35.06D0, 1128.8445850D0, 0.66443D-08, $ W -1.42D0, -0.78D0, 0.0D0, 0.0D0, 0.0D0, $ MSCF2(1,1,1) = 169.51D0, 0.435764D0, 0.0D0, $ M1 192.93D0, 1128.4096700D0, 6.644300993057D-09,$ M2 53.47D0, -0.0181510D0, 0.0D0, $ M3 $ MSCOF(1,1,2) = 316.65D0, -0.108D0, 0.0D0, $ RA 0.0D0, 0.0D0, 2.98D0, 0.0D0, 0.0D0, MSCOF(1,2,2) = 53.52D0, -0.061D0, 0.0D0, $ DEC 0.0D0, 0.0D0, -1.78D0, 0.0D0, 0.0D0, MSCOF(1,3,2) = 79.41D0, 285.161897D0, -0.389783D-09, $ W 0.0D0, 0.0D0, -2.58D0, 0.19D0, 0.0D0, $ MSCF2(1,1,2) = 169.51D0, 0.435764D0, 0.0D0, $ M1 192.93D0, 1128.40967D0, 6.644300993057D-09, $ M2 53.47D0, -0.018151D0, 0.0D0, $ M3 143.47D0, -0.018151D0, 0.0D0, $ M3 + 90 $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Perturbing bodies: $ PERB( 1) = 11*1, $ Newtonian point masses for planets, Sun & Moon. PERB( 5) = 2, $ Turns on relativistic influence of Jupiter. PERB(10) = 2, $ Turns on relativistic influence of Sun. $ SAPERB(1) = 22*0, $ Satellite perturbations are OFF $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Initial conditions: $ CENT = 'SUN' $ The ICs will be Sun centered. GEOFRM = .FALSE., $ Use the solar system barycenter reference frame. PLANET = 'YES', $ NO => Barycentric ; YES => Planet centered. $ $ When Earth is center, 'PLANET' is always 'YES', i.e., the PLANET flag $ doesn't affect the Earth state vector. In the Earth-Moon system it is $ always Earth centered regardless of the PLANET flag. $ $ Input coordinate system for ICs: $ IEQX = '2000', IMES = 'CARTES', IXAX = 'SPACE', IZAX = 'EARTH','MEAN','EQUATO', $ $ Output coordinate system: $ OCEN = 'SUN', OEQX = '2000', OMES = 'CARTES', OXAX = 'SPACE', OZAX = 'EARTH','MEAN','EQUATO', $ $ Print rotation matrices/angles when transforming ICs: $ GINBUG = .TRUE., $ $ Note: these initial conditions are given as an example only. $ Source is interpolation of NNAV Jun 12 14:48 p-file delivery $ prior to MATHILDE encounter: $ $ tube://usr2/nnav/mirage/solns/tcm5_n0c/p_tcm5_f.nio $ ITIM = ' 1-JUN-1997 00:00:00.0000 ET', IC(1) = 3.07663215124539435D+08, $ X (km) IC(2) = -1.81246580938933343D+07, $ Y IC(3) = -9.93769584719728865D+06, $ Z IC(4) = -3.04416794086022424D+00, $ X DOT (km/s) IC(5) = 1.57490562260724722D+01, $ Y DOT IC(6) = 6.63998952117909713D+00, $ Z DOT TEND = '03-JUL-1997 00:00:00.0000 ET', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Integration control: $ PVBUG(1) = 0, $ No acceleration or A matrix printout is requested. PVBUG(2) = 0, $ Stop PV debug print at the trajectory end. PVBUG(3) = 1, $ Print S/C block parameters for antenna pointing $ events, solar panel tilt change events and for $ start & end of finite motor burns. PVBUG(4) = 0, $ Standard diagnostic print. MAKEPV = .TRUE., $ A P/PV file is written out (on 16). RUNOUT = -1, $ Terminate post convergence on time or radius, $ whichever comes first. $ $ Spheres of influence (km): $ (Inside this radius, PVDRIVE switches center of integration. For Mathilde, $ we want this to remain the Sun) $ RSPH( 1) = 1.1241000D5, RSPH( 2) = 6.1626900D5, RSPH( 3) = 9.2464900D5, RSPH( 4) = 5.7723200D5, RSPH( 5) = 4.8208797D7, RSPH( 6) = 5.4563002D7, RSPH( 7) = 5.1744166D7, RSPH( 8) = 8.6626753D7, $ RSPH( 9) = 3.2995530D6, $ Pluto (NOT USED) RSPH( 9) = 0.0D0, $ Mathilde RSPH(10) = 0.0D0, $ Placeholder for Sun (not used) RSPH(11) = 6.6183000D4, $ $ The above spheres of influence were calculated using a formula attributed $ to Laplace. It's derivation can be found in Richard Battin's book: $ $ "An Introduction to the Mathematics and Methods of Astrodynamics" $ $ chapter 8, pages 395-398. The GMs used were from DE403. $ $ The traditional values: $ $ RSPH( 1) = 0.5D6, 2.5D6, 2.5D6, 2.0D6, 5.0D7, 5.0D7, $ 5.0D7, 8.0D7, 4.0D7, 0.0D0, 4.0D4, $ $ Integration independent variable: $ BASE0 = .TRUE., $ $ BASE0 = .TRUE. sets the independent variable to seconds past the trajectory $ epoch. This is the default and recommended value. Fred Krogh says that $ this will be better for the integrator. $ $ BASE0 = .FALSE. sets the independent variable to seconds past the reference $ epoch. If an old GIN file is converted to a new one using GINCONVERT, $ BASE0 is set to .FALSE., which is consistent with the old integrator. $ $ State equation tolerance; local absolute integration error (km/sec): $ EPS = 1.0D-11, $ $ Voyager NAV: EPS = 1.0D-9 $ Magellan: EPS = 1.0D-9 $ Galileo NAV: EPS = 1.0D-9 $ Ulysses NAV: EPS = 1.0D-9 $ TOPEX PVT: EPS = 7.0D-13 $ MGS NAV: EPS = 1.0D-10 $ NEAR NAV: EPS = 1.0D-9 (1.D-11 in lock-file) $ $ Tolerance for variational equations (recommended value): $ EPSV = 1.0D12, $ $ Scale factors for EPSV: $ EPSCAL(1) = 200*1.0D0, $ $ If EPSCAL = 0.0D0, the ODP uses EPSCAL = 1.0D0. $ If MASCONS are included in the partials list, set the EPSCAL factors for $ them at 1.0D0 for disk and point, and 1.0D-5 for curved mascons. $ For flat mascons, 1.0D5 is maximum! $ $ Maximum step size in seconds (5 days): $ HMAX = 432000.0D0, $ $ Minimum step size in seconds: $ HMIN = 0.005D0, $ $ Integration restarts: $ RESTRT(1) = .FALSE., $ No restart for shadow events. RESTRT(2) = .FALSE., $ No restart for attitude change events. RESTRT(3) = .FALSE., $ No restart for small force events. RESTRT(4) = .FALSE., $ No restart in the exponential atmosphere model. $ $ Termination control DISABLED for MATHILDE: $ DRVL = 0.0D0, $ Begin testing for closest approach (km). DRBD = 'PLUTO', $ Terminate integration 'TMPC' secs after cl appr. TMPC = 9.999D99, $ Do NOT stop integrating after cl appr to DRBD. RVAL = 0.0D0, $ Radius (km) at which to end the integration. RBOD = 'PLUTO', $ Terminate integration at radius 'RVAL' from RBOD. $ $ Trajectory end time: $ TEND = '01-MAR-1999 00:00:00.0000 ET', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Spacecraft mass: $ MASS = 800.72257, $ Mass of S/C (kg) (1997 Jun 12 16:23 gin file) $ $ (tube://usr2/nnav/mirage/solns/tcm5_n0c/gin16152.nio $ $ Historical: $ MASS = 804.57, $ NEAR injection mass minus 1kg de-spin yo-yo's $ (Larry Mosher 2/1/96) $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Solar radiation pressure (SRP) model: $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Zero out and initialize the SRP & orientation model parameters: $ ACANO(1,1) = 120*-1.0D30, $ Inertial reference direction. ANGL = 0.0D0, $ Angle about the Sun-S/C axis. ANGLS(1,1) = 600*0.0D0, $ Euler rotation angles. COMP(1) = 10*' ', $ Component type declarations (i.e. sphere). CSIZE(1,1) = 20*0.0D0, $ Component dimensions. DELFM(1,1) = 30*0.0D0, $ Effective area change increments. DUPRC(1,1,1) = 6000*0.0D0, $ Component orientation definitions. DUPRS(1,1) = 600*0.0D0, $ Direction of the S/C Z* axis. GANG(1) = 36*0.0D0, $ Antenna model: theta angles for GCO & GCOP. GCO(1,1) = 180*0.0D0, $ Antenna model: integral tables. GCONO(1) = 2*0, $ Antenna model: Chebyshev polynomial degree. GCOP(1,1) = 90*0.0D0, $ Antenna model: integral tables. ITDFC(1,1) = 1000*' ', $ Reflectivity degradation change epochs. $ or use: TDFC(1,1) = 1000*-1.0D30 ITDFM(1) = 10*' ', $ Effective area change epochs. $ or use: TDFM(1) = 10*-1.0D30 KMNC(1,1,1) = 4000*1.0D0, $ Component reflectivity degradation factors. REFBS(1,1) = 400*' ', $ Reference direction to compute X* & Y*. SCOFC(1,1) = 40*0.0D0, $ Component reflectivity coefficients. STABLE(1) = 2*0, $ Transformations of the S/C X*, Y*, Z* axes. TABVAL(1,1) = 200*0.0D0, $ Rotation angles applied in STABLE. TCANO(1) = 40*' ', $ Start time for ACANO interval. $ or use: DTCANO(1) = 40*-1.0D30 TUPRS(1) = 200*' ', $ S/C orientation change epochs. $ or use: DTUPRS(1) = 200*-1.0D30 UPRC(1,1) = 2000*' ', $ S/C component orientation reference. UPRS(1) = 200*' ', $ Direction of the S/C Z* axis. $ $ Other parameters required for the SRP model: $ $ GCOFL, MASS, MASDEC, P0A, P1A, REFB, SC, SHDFLG, SRPFLG, TTYPE, USECMP $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Activate the solar radiation pressure model: $ SRPFLG = .TRUE., SHDWFL = 0, $ 0 -> shadow model with integration restarts. $ 1 -> shadow model without restarts. SOLCOF = 1.0D0, $ General SRP scale factor. SOLSCL(1) = 10*1.0D0, $ Spacecraft component scale factors. $ ICMPTM( 1) = '01-FEB-1996 00:00:00 ET', ICMPTM( 2) = '01-MAR-1999 00:00:00 ET', $ $ No mass decrements are applied & all specified components are used: $ MASDEC( 1) = 0.0D0, USECMP(1,1) = 1,2,3,4,5, $ MASDEC( 2) = 0.0D0, USECMP(1,2) = 1,2,3,4,5, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Solar flux at 1 AU (kgkm3/m2s2): $ $ SC = (L*d*d/c) * (1000 m/km) * (1 km^3 / (1000 m)^3 ) where $ L = luminosity at 1 AU (1369 W/m^2) (1 W = 1 kg m^2/s^3 ) $ d = 149.6 Mkm/AU = 149597870.691 km/AU $ c = light speed = 299792.458 km/s $ $ SC = 1.020506244D8, $ MGS/TOPEX/Poseidon value: L = 1367.053608 W/m2 $ SC = 1.032200000D8, $ Magellan and PVO value. $ SC = 1.013048D8, $ NEAR NAV value SC = 1.01994367581D8, $ L=1366.3 W/m2 (6/97), S. Dewitte, DIARAD/VIRGO/SOHO $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ S/C component definitions: $ $ The following S/C components are all fixed in the ODP's S/C coordinate $ system: $ $ X* ---> NEAR spacecraft X-axis $ Y* ---> NEAR spacecraft Y-axis $ Z* ---> NEAR spacecraft Z-axis $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ NEAR S/C components & properties updated with JPL IOM 312.B-95-682 values. $ COMP(1)='ANTENNA', $ High gain CSIZE(1,1)=0.233D0, $ ... depth (m) CSIZE(2,1)=0.86027349D0, $ ... radius (m) SCOFC(1,1)=0.0375, 0.0D0, $ ... spec (fr & bk) 0.258333D0, 0.0D0, $ ... diff (fr & bk) $ COMP(2)='FLAT PLATEF', $ Front of solar panels CSIZE(1,2)=8.92D0, $ ... area (m^2) SCOFC(1,2)=0.05625D0, 0.0408333D0, $ ... spec & diff $ COMP(3)='FLAT PLATEB', $ Back of solar panels CSIZE(1,3)=8.92D0, $ ... area (m^2) SCOFC(1,3)=0.0375D0, 0.258333D0, $ ... spec & diff $ COMP(4)='FLAT PLATEF', $ Backside of s/c bus CSIZE(1,4)=2.33D0, $ ... area (m^2) SCOFC(1,4)=0.0375D0, 0.258333D0, $ ... spec & diff $ COMP(5)='CYLINDER', $ S/C body CSIZE(1,5)=1.452D0, $ ... length (m) CSIZE(2,5)=0.778D0, $ ... radius (m) SCOFC(1,5)=0.0295D0, 0.2316667D0, $ ... spec & diff $ $ Chebyshev transformation parameters: $ $ Note that the numerical integral tables -- GCO & GCOP & GANG -- were $ calculated for the NEAR high gain antenna. They were calculated from $ the ODP Utility program "ANTTAB" written by Rick Sunseri. $ $ radius= 0.86027349 m, depth= 0.233 m $ (omega= arctan(2*depth/radius)) $ $ P0A If the angle between the antenna pointing direction and $ the spacecraft-Sun direction is less than P0A, then the $ antenna front is under full illumination (deg) $ $ P1A If the angle between the antenna pointing direction and $ the spacecraft-Sun direction is between P1A and 180 $ degrees, then the antenna back is under full illumination $ (deg) $ P0A = 61.556118, $ Angle limit between full/partial front illumination. P1A = 118.44389 , $ Angle limit between full/partial back illumination. $ GCOFL = 1, $ GCO, GCOP tables are Chebyshev polynomial coefficients. GCONO = 12, 7, $ Polynomial degree for back (GCO) & front (GCOP). $ $ Backside: $ The first two rows below equal (P1A+P0A)/2, (P1A-P0A)/2. $ $ I21 I22 I31 I32 I33 GCO(1,1) = 0.90000000E+02, 0.90000000E+02, 0.90000000E+02, 0.90000000E+02, 0.90000000E+0 0.28443884E+02, 0.28443884E+02, 0.28443884E+02, 0.28443884E+02, 0.28443884E+0 -0.26155570E+00,-0.29125383E+00, 0.18434623E+00, 0.16779085E+00, 0.17778791E+0 -0.38103083E+00,-0.38020518E+00, 0.29237321E+00, 0.25141585E+00, 0.24065098E+0 -0.13048425E+00,-0.76069325E-01, 0.14044109E+00, 0.98506585E-01, 0.61787140E-0 -0.38353868E-02, 0.16647017E-01, 0.34320455E-01, 0.13107652E-01,-0.25099039E-0 0.77821305E-02, 0.31406560E-02, 0.79130131E-03,-0.20920534E-02,-0.12092999E-0 0.41518494E-03,-0.20942891E-03,-0.11815116E-02,-0.27759821E-03, 0.77593158E-0 -0.15108149E-03, 0.34480565E-03,-0.46769565E-04, 0.17433082E-04,-0.18146055E-0 0.38328904E-04, 0.12406651E-05, 0.16228323E-04,-0.20481782E-04,-0.12965002E-0 0.15267527E-05, 0.55911853E-04,-0.31315326E-05,-0.88088917E-07,-0.27820495E-0 0.47232952E-05,-0.10664182E-07,-0.12803476E-06,-0.23968007E-05,-0.26717537E-0 -0.10781563E-07, 0.12031040E-04,-0.29109935E-06,-0.22984232E-08,-0.59725503E-0 0.70813815E-06,-0.87677127E-09, 0.16407470E-08,-0.35437390E-06,-0.23237412E-0 -0.25287881E-08, 0.30184353E-05,-0.29843989E-07, 0.19690543E-08,-0.15008067E-0 $ $ Frontside: $ $ I21P I22P I31P I32P I33P GCOP(1,1) = 0.75778061E+02, 0.75778061E+02, 0.75778061E+02, 0.75778061E+02, 0.75778061E+0 0.14221941E+02, 0.14221941E+02, 0.14221941E+02, 0.14221941E+02, 0.14221941E+0 0.37802729E+00, 0.38885963E+00, 0.27412271E+00, 0.24418947E+00, 0.24190886E+0 -0.38505456E+00,-0.36731386E+00,-0.31958723E+00,-0.26198807E+00,-0.23876369E+0 0.63697062E-02,-0.25083797E-01, 0.51728338E-01, 0.19997321E-01,-0.37648750E-0 0.56982721E-03, 0.35894278E-02,-0.60934629E-02,-0.23039875E-02, 0.61530527E-0 0.45956298E-04,-0.99189065E-05,-0.32436440E-03, 0.51315754E-04, 0.48326851E-0 0.73560725E-04,-0.43227799E-04, 0.15717626E-03, 0.68185684E-04,-0.47059081E-0 -0.35789351E-04, 0.54123097E-06, 0.14567665E-05,-0.15404394E-04,-0.12586420E-0 0.39581369E-05, 0.12013402E-05,-0.48121838E-05, 0.11929963E-05,-0.14064504E-0 $ $ Values for the attack angle, theta, corresponding to GCO & GCOP entries. $ Only needed when GCOFL=0 (for linear interpolation) $ $ GANG = $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ S/C attitude definitions: $ ANGL = 0.0D0 $ Angle about Sun-S/C axis. REFB = 'STAR', $ Ref direction is wrt this body ACANO(1,1)= -1.D0, 0.0, 0.0, $ Inertial ref. dir. in xyz EME200 TCANO(1) = '01-JAN-1996 0:00:00.0 ET', $ Beginning of ACANO ref system $ Spacecraft orientation changes occur at specific epochs. TTYPE(1) = 'TIME', TTYPE(2) = ' ' $ $ TUPRS: defines the epoch of the S/C orientation change. $ UPRS: defines the direction in which Z* points. $ REFBS: defines the direction of the reference vector, R. $ R is used to compute X* and Y*: $ Y* = R x Z* $ X* = Y* x Z* = (R x Z*) x Z* $ ANGLS: defines a set of Euler rotations about Z*, X*', Z*'' $ TUPRS(1) = '01-JAN-1996 0:00:00.0 ET', UPRS(1) = 'SUN', $ S/C nom. -> Sun during cruise REFBS(1,1) = 'STAR', ANGLS(1,1) = 0.0D0, 0.0D0, 0.0D0, $ No rotations $ DUPRS(1,1) = 0.0, 0.0, 1.0, $ S/C z-dir (unused; UPRS is body) UPRC(1,1) = 'SC ANG', DUPRC(1,1,1)=0.0D0, 0.0D0, 1.0D0, $ Antenna UPRC(1,2) = 'SC ANG', DUPRC(1,1,2)=0.0D0, 0.0D0, 1.0D0, $ F. solar panel UPRC(1,3) = 'SC ANG', DUPRC(1,1,3)=0.0D0, 0.0D0, 1.0D0, $ B. solar panel UPRC(1,4) = 'SC ANG', DUPRC(1,1,4)=0.0D0, 0.0D0,-1.0D0, $ B. s/c bus UPRC(1,5) = 'SC ANG', DUPRC(1,1,5)=0.0D0, 0.0D0, 1.0D0, $ s/c body $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Reflectivity coefficient degradation model. $ $ Linearly interpolate the degradation factors: $ INDEG = 1, $ $ Degradation intervals and factors for each component: $ ITDFC(1, 1) = '01-JAN-1996 00:00:00 ET', ITDFC(2, 1) = '01-JUN-2000 00:00:00 ET', KMNC(1,1,1) = 1.0D0, 1.0D0, KMNC(1,2,1) = 1.0D0, 1.0D0, $ ITDFC(1, 2) = '01-JAN-1996 00:00:00 ET', ITDFC(2, 2) = '01-JUN-2000 00:00:00 ET', KMNC(1,1,2) = 1.0D0, 1.0D0, KMNC(1,2,2) = 1.0D0, 1.0D0, $ ITDFC(1, 3) = '01-JAN-1996 00:00:00 ET', ITDFC(2, 3) = '01-JUN-2000 00:00:00 ET', KMNC(1,1,3) = 1.0D0, 1.0D0, KMNC(1,2,3) = 1.0D0, 1.0D0, $ ITDFC(1, 4) = '01-JAN-1996 00:00:00 ET', ITDFC(2, 4) = '01-JUN-2000 00:00:00 ET', KMNC(1,1,4) = 1.0D0, 1.0D0, KMNC(1,2,4) = 1.0D0, 1.0D0, $ ITDFC(1, 5) = '01-JAN-1996 00:00:00 ET', ITDFC(2, 5) = '01-JUN-2000 00:00:00 ET', KMNC(1,1,5) = 1.0D0, 1.0D0, KMNC(1,2,5) = 1.0D0, 1.0D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Planetary radiation model: $ $ The planetary radiation model accounts for the forces on s/c due to a $ nearby planet's albedo and infrared emissivity. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Zero out and initialize planetary radiation model parameters: $ RPBOD = ' ', $ Radiating planetary body: NONE $ If no planet is set, the model is off. $ ALBCOF = 1.0D0, $ General albedo scale factor. ALBSCL(1) = 10*1.0D0, $ S/C component area scale factors (albedo). ALCOFC(1,1) = 40*0.0D0, $ CAL(0,0) = 100*0.0D0, $ C(n,m) albedo series coefficient. CEP(0,0) = 100*0.0D0, $ C(n,m) infrared emission series coefficient. EPSIMP = 1.0D-4, $ Relative epsilon of convergence. IFRCOF = 1.0D0, $ General infrared scale factor. IFRSCL(1) = 10*1.0D0, $ S/C component area scale factors (IR). IRCOFC(1,1) = 40*0.0D0, $ LMXAL = 0, $ Degree of the albedo series. LMXEP = 0, $ Degree of the infared emission series. MXSIMP = 5, $ Maximum iterations in the quadrature. NPRING = 0, $ Number of rings in the albedo/IR model. SAL(0,0) = 100*0.0D0, $ S(n,m) albedo series coefficient. SEP(0,0) = 100*0.0D0, $ S(n,m) infrared emission series coefficient. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ The following example inputs for the Mars albedo model were taken from: $ $ 1) Creel, D. D., "General Inputs for DPTRAJ/ODP Planetary Radiation Model", $ IOM 314.6-1321, August 6, 1991. $ $ RPBOD = 'MARS', $ LMXAL = 7, $ Degree of the albedo series. $ $ CAL(0,0) = 0.294838D0, $ Mars perihelion albedo coefficients. $ CAL(1,0) = 0.046034D0, $ CAL(2,0) = 0.049287D0, $ CAL(3,0) = 0.009035D0, $ CAL(4,0) = 0.031791D0, $ CAL(5,0) =-0.004347D0, $ CAL(6,0) =-0.012938D0, $ CAL(7,0) =-0.012793D0, $ $ CAL(0,0) = 0.231281D0, $ Mars aphelion albedo coefficients. $ CAL(1,0) =-0.040753D0, $ CAL(2,0) = 0.031974D0, $ CAL(3,0) =-0.032247D0, $ CAL(4,0) = 0.021980D0, $ CAL(5,0) =-0.025561D0, $ CAL(6,0) =-0.008054D0, $ CAL(7,0) = 0.005228D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Thermal imbalance model: $ THMCMP = .FALSE., $ The thermal imbalance acceleration is off. $ EMISS( 1) = 10*0.0D0, $ S/C component emissivity coefficients. $ FACE( 1) = 10*' ', $ Parameter only used by TOPEX/Poseidon. THAREA( 1) = 10*0.0D0, $ Thermal imbalance S/C component areas. THMCOF(1,1) = 50*0.0D0, $ Thermal coefficients for each component. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Maneuver and Nongravitational acceleration models: $ $ Zero out and initialize the maneuver & nongrav model parameters: $ $ STABLE(1) = 0, 0, $ TABVAL(1,1) = 200*0.0D0, $ List of times when 'STABLE' events occur. $ SAAT(1,1) = 1998*' ', SAAP(1,1) = 8991*0.0D0, ISTREX(1) = 100*' ', ISTPEX(1) = 100*' ', AR(1) = 100*0.0D0, AX(1) = 100*0.0D0, AY(1) = 100*0.0D0, BB(1) = 100*0.0D0, DELVB1(1) = 99*0.0D0, MB1T(1) = 99*' ', MB1V(1,1) = 297*0.0D0, MB1P(1) = 99*0.0D0, MA1A(1,1) = 990*0.0D0, MA1D(1) = 99*0.0D0, MA1K(1) = 99*0.0D0, MA1F(1,1) = 495*0.0D0, MA1M(1,1) = 396*0.0D0, MA1T(1) = 99*' ', BURN(1) = 99*0, LPLANE(1) = 99*' ', TPEQ(1) = 99*0.0D0, C3(1) = 99*0.0D0, DELV(1) = 99*0.0D0, ISMFTM(1) = 1000*' ', SMFDR(1,1) = 3000*0.0D0, SMFDV(1,1) = 3000*0.0D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Quadratic acceleration model: $ $ Start and stop epochs: $ $ SAAT(1,1) = '17-FEB-1996 00:00:00.0000 ET', $ SAAT(2,1) = '01-FEB-1999 00:00:00.0000 ET', $ $ Accelerations (I,J): $ SAAP(1,1) = $ Index I = 1 => acceleration in R (ATAR nominal) $ SAAP(4,1) = $ Index I = 4 => acceleration in X (ATAX nominal) $ SAAP(7,1) = $ Index I = 7 => acceleration in Y (ATAY nominal) $ Index J provides a time table. $ $ Exponential acceleration model: $ $ Start and stop epochs: $ $ ISTREX(1) = '17-FEB-1996 00:00:00.0000 ET', $ ISTPEX(1) = '01-FEB-1999 00:00:00.0000 ET', $ $ Exponent coefficients: $ AR(1) = $ R (GLAR nominal) $ AX(1) = $ X (GLAX nominal) $ AY(1) = $ Y (GLAY nominal) $ BB(1) = $ Time scale factor (GLBT nominal) $ $ Impulsive burn maneuvers: $ BRNCRD(1) = 99*1, $ 1 => delta-V wrt S/C X*,Y*,Z* $ $ MB1T(1) = '02-MAR-1996 00:00:00.0000 UTC', $ $ Delta velocity components: $ DELVB1(1) = $ Burn magnitude (km/s). $ MB1D(1) = $ Burn duration (s). $ MB1V(1,1) = $ Delta-V increments (IDLX,Y,Z nominals $ MB1P(1) = $ Mass decrement (kg). $ $ Finite burn maneuvers: $ ITPEQ(1) = 99*'2000', $ Epoch of burn coordinate system. LPLANE(1) = 99*' ', $ Thrust vector reference system. MA1K(1) = 99*1.0D-03, $ Conversion factors for finite burns. $ COORS(1,1) = ' ','SPACE','EARTH','MEAN','EQUATO', COORS(1,2) = ' ','SPACE','EARTH','MEAN','EQUATO', COORS(1,3) = ' ','SPACE','EARTH','MEAN','EQUATO', COORS(1,4) = ' ','SPACE','EARTH','MEAN','EQUATO', COORS(1,5) = ' ','SPACE','EARTH','MEAN','EQUATO', $ $ The following example inputs were generated from SEPV and used biased $ Mars Mean Equator of Date B-plane targets: $ $ BDOTT = -44000.0 km BDOTR = -52000.0 km +3 hrs in flight time $ $ The thrust and mass flow rate values came from the following: $ $ 1) Dominick, S., "Updated Thrust Levels for Main Engine and Thrusters", $ Lockheed Martin IOM, March 25, 1996. $ $ MA1T(1) = '21-NOV-1996 22:00:00.0000 UTC', $ $ BURN(1) = 1, $ Termination flag (DURAT, DV, C3). $ MA1F(1,1) = 656.0D0, $ Thrust coefficients (kilo-Newtons). $ 4*0.0D0, $ MA1M(1,1) = 0.2107D0, $ Mass flow rate (kg/s). $ 3*0.0D0, $ MA1A(1,1) = 249.6836008603889D0, $ RA coefficients (degree). $ 4*0.0D0, $ MA1A(6,1) = -48.06990205194584D0, $ DEC coefficients (degree). $ 4*0.0D0, $ MA1D(1) = 0.1126066527720419D0, $ Burn duration cutoff (s). $ $ DELV(1) = 0.0D0, $ DV magnitude cutoff. $ ACELC(1,1) = 0.0D0, 0.0D0, 0.0D0, $ Thruster misalign coeffs, DV stop. $ BRD(1) = $ Reference planet, C3 cutoff. $ C3(1) = $ Twice energy per unit mass limit. $ $ Gyro control: $ $ ITVDIL(1) = $ Inertial lock epoch. $ ITVTRN(1) = $ Turn epoch. $ LDYN(1) = $ Thrust vector reference plane flag. $ TVDGDR(1,1) = $ Pitch, Yaw, Roll rates. $ TVDORA(1,1) = $ Turn angles. $ TVDORT(1,1) = $ Turn sequences. $ TVEPS(1,1) = $ Pitch, Yaw, Roll offsets. $ $ Gyro drift: $ IROLLX(1) = 99*0, $ Impulsive burn not under gyros. ROLLAX(1) = 99*0, $ Finite burn not under gyros. $ $ Angular momentum desaturation events: $ $ 1) "NEAR Thruster Location and Utilization Matrix", provided by $ Cliff Helfrich, Aug 14, 1997. $ $ Thruster orientation is in the ODP's s/c X*,Y*,Z* system. $ $ NOTE: No 2b thruster. 3b and 4b fired in pairs at 50%. $ THRSTR(1, 1) = 60*0.0D0, $ THRSTR(1, 1) = 1.000D0, 0.000D0, 0.000D0, $ 1a ( 21 N) THRSTR(1, 2) = 1.000D0, 0.000D0, 0.000D0, $ 2a ( 21 N) THRSTR(1, 3) = 1.000D0, 0.000D0, 0.000D0, $ 3a ( 21 N) THRSTR(1, 4) = 1.000D0, 0.000D0, 0.000D0, $ 4a ( 21 N) THRSTR(1, 5) = 0.000D0, 0.000D0, 1.000D0, $ 5a ( 3.5 N) THRSTR(1, 6) = 0.000D0, 0.000D0, 1.000D0, $ 6a ( 3.5 N) THRSTR(1, 7) = -1.000D0, 0.000D0, 0.000D0, $ 1b ( 3.5 N) THRSTR(1, 8) = -1.000D0, 0.000D0, 0.000D0, $ 3b ( 3.5 N) THRSTR(1, 9) = -1.000D0, 0.000D0, 0.000D0, $ 4b ( 3.5 N) THRSTR(1,10) = 0.000D0, 0.000D0, -1.000D0, $ 5b ( 3.5 N) THRSTR(1,11) = 0.000D0, 0.000D0, -1.000D0, $ 6b ( 3.5 N) THRSTR(1,12) = 1.000D0, 0.000D0, 0.000D0, $ LVA (467 N) $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ TWIST $ $ Standard print control: $ BARYFL = 0, $ Get the barycenter shift vector from: $ 0 => internal computation $ 1 => satellite ephemeris DATAFL = 0, $ Read constants for TWIST from: $ 0 => the P/PV file $ 1 => the GIN file PCBPRT = 2, $ Reference center for TWIST print: $ 0 => use the planet center $ 1 => use the barycenter $ 2 => use both PBUG(1) = 10*0, $ Turn off TWIST debugging print. $ PBUG(3) = 1, for aerobraking data HPEP = 3600.0D0, $ Interval to check trigger (seconds) TPWANT = 'UTC', $ Time listed in ET & UTC. $ $ Print termination control: $ FAPSIS = -1, $ Terminate print at periapsis. CLOS = 'PLUTO', CRBD = 'PLUTO', CRFL = 'INTERN', $ Closest approach testing within 'CRAD'. CRAD = 1.0D8, $ Radius for closest approach test (km). EBOD = 'PLUTO', EDIS = 0.0D0, $ Distance from EBOD to end print (km). ELIS(1) = 5, 6, 4*0, $ Print at time supplied in ETIM. $ ETIM = '31-MAR-2000 00:00:00 ET', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ The print lists are given below. The arrays PHSTRL(J,I), PHENDL, MOA1, $ etc. are assigned to integers which reference the lists. The index 'I' $ denotes 'PHASE', that part of the trajectory when the body in PCBBOD $ corresponds to the primary body (integration center) of the trajectory. $ $ Phase (integration center) order for the launch & cruise: $ PCBBOD(1) = 'EARTH', 'SUN', 'PLUTO', 2*' ', $ $ Geometric & phase events: $ EQUTXL(1,1) = 30*0, $ Print at equator crossings. NPOLXL(1,1) = 30*0, $ Print at north pole minimum range. PCBCAL(1,1) = 30*0, $ Print at body closest approach. PCBCAL(1,1) = 1, PCBCAL(1,3) = 3, PCBDST(1) = 5*0.0D0, $ Distance for print from PCBBOD(I). PCBDSL(1,1) = 30*0, $ Print lists for PCBDST. PCBGOL(1,1) = 30*0, $ Print at geocentric occultations. PCBGOL(1,1) = 0, PCBGOL(1,2) = 0, PCBGOL(1,3) = 3, ATMRAD( 4) = 25.9D0, $ Mathilde radius + 0 km. PCBSOC(1,1,1) = 150*0, $ Print at star occultations. OCSTAR(1) = 5*' ', $ Star names. STARDC(1) = 5*0.0D0, $ DEC of stars in OCSTAR (degrees). STARRA(1) = 5*0.0D0, $ RA of stars in OCSTAR (degrees). PCBTRG = 0, $ -1 => print at each periapsis. $ 0 => print at apoapsis & periapsis. $ 1 => print at each apoapsis. PHENDL(1,1) = 30*0, $ Print at the phase end. PHSTRL(1,1) = 30*0, $ Print at the phase start. PHSTRL(1,1) = 1, PHSTRL(1,2) = 2, PHSTRL(1,3) = 3, SPOLXL(1,1) = 30*0, $ Print at south pole minimum range. TERMXL(1,1) = 30*0, $ Print at terminator crossings. TANOM(1) = 0.0D0, $ True anomaly value at which to print. TPPERI = 0.0D0, $ Time after periapsis at which to print. PPERI(1) = 6*0, $ Print lists for TANOM and TPPERI. $ $ Physical model & S/C events: $ ATMPR(1,1) = 30*0, $ Print for atmospheric lift & drag. ATPR(1) = 6*0, $ Print for quadratic gas leaks. GLPRT(1) = 6*0, $ Print for exponential gas leaks. MOA1(1) = 6*0, $ Print at finite maneuvers. MOA1(1) = 1, MOB1(1) = 6*0, $ Print at instantaneous maneuvers. MSCOPR(1,1) = 30*0, $ Print for MASCON sphere. OBPRTL(1,1) = 30*0, $ Print for oblateness sphere. OBPRTL(1,1) = 1, OBPRTL(1,2) = 0, OBPRTL(1,3) = 3, PCBSHL(1,1) = 30*0, $ Print for SRP shadowing events. $ $ Absolute epoch print: $ ABSF(1,1) = 60*0, $ Print at epochs in 'ABST'. ABST(1) = 10*' ', $ $ Radius-Delta-Radius (RDR) print: $ PCBRDR(1,1,1) = 75*0.0D0, PCBRDR(1,1,1) = 0.0D0, $ Start radius for RDR print (km). PCBRDR(2,1,1) = 0.0D0, $ Delta radius (increase) (km). PCBRDR(3,1,1) = 0.0D0, $ Stop radius for RDR print (km). PCBRDL(1,1) = 30*0, $ Print lists for RDR events. $ $ Time-Delta-Time (TDT) print: $ PCBTHW(1) = 'ET', $ HAVE time-type for TDT print. IPCBTD(1,1,1) = 150*' ', $ TDT print in phase 'I'. IPCBTD(1,1,1) = ' ', $ Start times for TDT print. IPCBTD(2,1,1) = ' ', $ Delta times. IPCBTD(3,1,1) = ' ', $ Stop times for TDT print. PCBTDL(1,1) = 30*0, $ No default print lists. PCBTDF(1) = 2, $ Phase independent print. $ $ Satellite event print: $ CLOSAT(1) = 10*' ', CLOLSX(1,1) = 7, CLOLSX(1,2) = 8, RADSAT(1) = 5.0D4, 5.0D4, $ Distance to monitor closest approach (km). $ ECLSAT(1) = 10*' ', $ Satellites for eclipse events. OCSATG(1) = 10*' ', $ Satellites for Earth occultations. OCSATH(1) = 10*' ', $ Satellites for Sun occultations. OCSATS(1,1) = 50*' ', $ Satellites for star occultations. TRNSAT(1) = 10*' ', $ Satellites for occultations & transits. CLOLST(1) = 6*0, $ Print lists of OCSATG, OCSATH, OCSTAR. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Initialize and define the print lists: $ BODCOR(1,1, 1) = 360*' ', BODEQX( 1, 1) = 45*'2000', $ Specifies the coordinate system epoch. BODINF( 1, 1) = 45*1, $ The "of date" systems will be inertial. CONCEN( 1) = 15*' ', CONCOR(1,1, 1) = 240*' ', CONEQX( 1, 1) = 60*'2000', $ Nominally J2000 (see below) ANGLEB( 1, 1) = 60*' ', $ $ Print list #1 $ BODCOR(1,1, 1) = 'EARTH','EARTH','MEAN','EQUATO','PLUTO' CONCEN( 1) = 'EARTH', CONCOR(1,1, 1) = 'SPACE','EARTH','MEAN','EQUATO', CONCOR(1,2, 1) = 'SPACE','EARTH','MEAN','ORBITA', ANGLEB( 1, 1) = 'PRINT','PLUTO', $ $ Print list #2 $ BODCOR(1,1,2)= 'SUN','EARTH','MEAN','EQUATO','PLUTO', CONCEN(2) = 'SUN', CONCOR(1,1,2)= 'SPACE','EARTH','MEAN','EQUATO', CONCOR(1,2,2)= 'SPACE','EARTH','MEAN','ORBITA', ANGLEB(1,2) = 'PRINT','PLUTO', $ $ Print list #3 $ BODCOR(1,1,3)= 'PLUTO','EARTH','MEAN','EQUATO', CONCEN(3) = 'PLUTO', CONCOR(1,1,3)= 'SPACE','EARTH','MEAN','EQUATO', CONCOR(1,2,3)= 'SPACE','EARTH','MEAN','ORBITA', CONCOR(1,3,3)= 'SPACE','PLUTO','TRUE','EQUATO', CONEQX(1,3) = '2000','2000','DATE', ANGLEB(1,3) = 'PRINT', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ SAVE file generation: $ FERP = 31, $ Fixed variable output frame: 31 => EME2000 SPABT(1) = 10*' ', $ Absolute epoch to write out. SPBOD(1) = 'EARTH', $ Extra body name for fixed output SPDBUG = 0, $ Do not print SAVE file data records. SPTAPF = 0, $ >0 => Turn on writing of save tape SPTDT(1,1) = 30*' ', $ TDT times to write out. SPHWTM = 'ET', $ Time type of epochs in SPABT HWSPT = 'ET', $ Time type of epochs in SPTDT $ $ Print lists to examine for PRGVAR names: $ SAPLIS(1) = 1,2,3, $ PRGVAR(1,1) = 400*' ', $ $ PRGVAR(1,1) = 'SMA','ECC','TA','LAN1','APF1','INC1','PER', $ 'ALTP1','DR1','RIP1','VIP1','LATP1','LONP1', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ OPTG file generation: $ $ OPTG file title & labels: $ OTITLE = 'NEAR Radio Science GIN Lock File: OPTG File', NAMEXT = 'NEAR Radio Science Team', OPTMIS = '93', $ $ Note: If one wants an event printed on the OPTG file, one must also have $ it printed out on TWIST. $ $ First specify TWIST print begin & end times. These define the absolute $ limits of the OPTG file -- it cannot start before or end after these times. $ Now define default OPTG begin & end times. If they are outside of TWIST $ print limits (or blank), then they will be set to the TWIST limits. $ OPTBEG = '01-Jan-1996 00:00:00 ET', OPTEND = '31-Mar-2000 00:00:00 ET', $ OPTBOD(1) = 5*' ', $ OPTG file central body or 'CRUISE'. $ OPTBOD = ' ' turns off OPTG file creation. OBDEVT = ' ', $ Event defining orbit boundary. $ OBDEVT = ' ' defaults to periapsis. OPTGPH = 'CRUISE', $ Mission phase label. CONANG = 0, $ SEP angle denoting conjunction. INORBN = 0, $ Initial orbit number. $ $ W A R N I N G ! ==> OCCRAD & ATMRAD are EQUIVALENT input parameters. $ In the source code, they are "equivalenced". $ OCCRAD( 4) = 0.0D0, $ Radius for atmosphere occultation. $ $ Specify which events to print out on the OPTG file: $ OPTEVT( 1,1) = .TRUE., $ CONST: Write a record with planet constants. OPTEVT( 2,1) = .TRUE., $ PERIAP: Periapsis. OPTEVT( 3,1) = .TRUE., $ APOAP: Apoapsis. OPTEVT( 4,1) = .TRUE., $ EOCCAB: Begin geocen. atmos occult by OPTBOD. OPTEVT( 5,1) = .TRUE., $ EOCCAE: End geocen. atmos occult by OPTBOD. OPTEVT( 6,1) = .FALSE., $ SOCCAB: Begin heliocen. atmos occult by OPTBOD. OPTEVT( 7,1) = .FALSE., $ SOCCAE: End heliocen. atmos occult by OPTBOD. OPTEVT( 8,1) = .TRUE., $ EOCCSB: Begin geocen. surface occult by OPTBOD. OPTEVT( 9,1) = .TRUE., $ EOCCSE: End geocen. surface occult by OPTBOD. OPTEVT(10,1) = .TRUE., $ SOCCSB: Begin heliocen. surface occult by OPTBOD. OPTEVT(11,1) = .TRUE., $ SOCCSE: End heliocen. surface occult by OPTBOD. OPTEVT(12,1) = .TRUE., $ AEQUAX: Ascending OPTBOD equator crossing. OPTEVT(13,1) = .TRUE., $ DEQUAX: Descending OPTBOD equator crossing. OPTEVT(14,1) = .TRUE., $ DLTERM: Dark to light terminator crossing. OPTEVT(15,1) = .TRUE., $ LDTERM: Light to dark terminator crossing. OPTEVT(16,1) = .TRUE., $ NPOLEX: North pole minimum slant range. OPTEVT(17,1) = .TRUE., $ SPOLEX: South pole minimum slant range. $ CONEVT( 1) = .TRUE., $ SCONB: Begin superior conjunction. CONEVT( 2) = .TRUE., $ SCONE: End superior conjunction. CONEVT( 3) = .TRUE., $ ICONB: Begin inferior conjunction. CONEVT( 4) = .TRUE., $ ICONE: End inferior conjunction. CONEVT( 5) = .TRUE., $ SCONJ: Cross integral angle boundary (SUP CONJ). CONEVT( 6) = .TRUE., $ ICONJ: Cross integral angle boundary (INF CONJ). CONEVT( 7) = .TRUE., $ ICONM: Minimum inferior conjunction SEP angle. CONEVT( 8) = .TRUE., $ SCONM: Minimum superior conjunction SEP angle. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ CRSPOST $ $ Celestial reference set (CRS). S/C centered state placed on output for $ each CRS body: $ CRSBOD(1) = 'PLUTO', 'EARTH', 'SUN', $ CRSM = 0, $ No print. CRSPRT = 1, $ Print CRS Constants, 1st & last data records $ IPSTM = ' ', $ Printout start epoch. $ ETIM = ' ', $ Printout end epoch. SPTDT(1,1) = 30*' ', $ Times to write 'SAVE TAPE' $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ LITIME $ $ Geocentric or topocentric one-way light times (OWLT) calculated for $ specified time increments during some span: $ ITITLE = 'NEAR Radio Scienc GIN Lock File: LITIME File', NAMEXT = 'NEAR Radio Science Team', IHEAD = ' ', ICOMNT = ' ', $ IMISSN = 'NEAR', ISCID = 'NEAR', IOPT = 3, $ Get printout and file. ISTRT = ' ', $ Start time, SCET in GMT. IEND = ' ', $ End time, SCET in GMT. $ STANO(1) = 15, 45, 65, $ Stations for topocentric OWLT. $ 3 ==> geocentric OWLT. TINT = 0.0D0, $ OWLT computation interval (seconds). TOL = 1.0D-6, $ OWLT convergence tolerance (seconds). $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ STATRJ $ $ Generate geocentric and tropocentric information for the DSN. $ STALAB = 2*' ', STALAB(1) = ' ', HVFILE = 'NO', $ Station polynomial file is generated. TRJPRT = 'NO', $ No GEO or TOPO print during burns. STANUM(1) = 12, 14, 15, 42, 43, 45, 46, 61, 63, 65, 10*0, STABEG = ' ', $ Start epoch (UTC) of the file. STASTP = ' ', $ End epoch (UTC) of the file. OCCBOD = 'PLUTO', $ Extra body for geometric calculations. VPACC = 1.0D0, $ Tolerance (min) in rise/set iterations. LTACC = 0.01D0, $ Tolerance (sec) in LT iteration. $ $ Numerical control parameters: $ $ Note: These quantities specify polynomial coefficients for the $ RA & DEC or the AZ & EL for the station-to-S/C vector. $ NSECIT = 5, $ Max # of secant iterations for rise/set. NDEG = 10, $ Degree of polynomials on file. STAPTS = 13, $ Number of points in polynomials. LSPH(1) = 50.0D3, 200.0D3, $ Radii of near & far Earth phases (km). ESPH(1) = 50.0D3, 200.0D3, $ Radii of near & far "PLUTO" phases (km). PSPANS(1) = 0.025D0, $ Geocentric near Earth span (days). PSPANS(2) = 0.1D0, $ Geocentric far Earth span (days). PSPANS(3) = 1.0D0, $ Geocentric cruise span (days). PSPANS(4) = 0.1D0, $ Geocentric far "PLUTO" span (days). PSPANS(5) = 0.025D0, $ Geocentric near "PLUTO" span (days). NPERP(1) = 7, $ TOPO spans/pass, near Earth. NPERP(2) = 3, $ TOPO spans/pass, far Earth. NPERP(3) = 1, $ TOPO spans/pass, cruise. NPERP(4) = 3, $ TOPO spans/pass, far "PLUTO". NPERP(5) = 7, $ TOPO spans/pass, near "PLUTO". NPERP(6) = 3, $ TOPO spans/pass, max ELV > 70 degrees. VPTBLE(1,1) = 1.0D4, 3.0D0, $ Monitor rise/set every 3 min. < 10K km. VPTBLE(1,2) = 2.5D4, 20.0D0, $ Monitor rise/set every 20 min. < 25K km. VPTBLE(1,3) = 5.0D4, 40.0D0, $ Monitor rise/set every 40 min. < 50K km. VPTBLE(1,4) = 1.0D5, 50.0D0, $ Monitor rise/set every 50 min. < 100K km. VPTBLE(1,5) = 1.0D20, 60.0D0, $ Monitor rise/set every 60 min. > 100K km. $ $ Print control parameters: $ STADBG = 'NO', $ No debug print. PRTBEG = ' ', $ Begin STATRJ print (time in UTC). PRTSTP = ' ', $ End STATRJ print (time in UTC). PRTHED = 'YES', $ Print the header records. RISPRT = 'NO', $ Don't print station rise/set events. SUMTAB = 'YES', $ Print rise/set events. $ 'ONLY' => Summary table only. GPRT(1) = 20*1, $ Print all 20 geocentric quantities. TPRT(1) = 0, 24*1, $ Print all 25 topocentric quantities. STADEL(1,1) =30*' ', $ 10 TDT print sequences. STATIM(1) = 10*' ', $ Absolute epoch (UTC) prints. STAPRT(1) = 15, 45, 65, $ Stations to print. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Station locations: $ $ 1) Folkner, W. M., "Current DSN Station Locations," JPL IOM 335.1-95-027, $ October 16, 1995. $ $ Station locations are for use with J2000 ephemerides (i.e. DE403). $ $ Stations included are : 12,13,14,15,16,17, $ 23,24,25,26,27,28, $ 33,34,42,43,45,46, $ 53,54,61,63,65,66. $ $ The following station location and mask data is consistent with the ITRF93 $ reference standard: $ ESTRF = 'ITRF93', $ ESLABL = 'FOLKNER: JPL IOM 335.1-95-027', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Zero out and initialize the plate motion parameters: $ ECPLAT(1) = 300*' ', ECNUM(1) = 300*0, ECRATE(1,1) = 900*0.0D0, $ ECEPOC(1) = 300*'01-JAN-1993 00:00:00', PLATEM = 'LINEAR', $ ECNUM(1) = 10, ECRATE(1,1) = -0.57D0, -1.98D0, -0.01D0, $ Goldstone. ECNUM(2) = 40, ECRATE(1,2) = 5.06D0, 1.97D0, 0.01D0, $ Canberra. ECNUM(3) = 60, ECRATE(1,3) = 2.55D0, 2.11D0, 0.11D0, $ Madrid. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ REGRES will compute antenna offset corrections as follows: $ ANTENA = .TRUE., ANTARM(1) = 6.7060D0, $ For 26-M H-D or 34-M H-D (m). ANTARM(2) = 0.9144D0, $ For 26-M A-E (m). ANTARM(3) = 6.7060D0, $ For 26-M X'-Y' (m). ANTARM(4) = 2.4380D0, $ For 9-M X-Y (m). ANTARM(5) = 1.8288D0, $ For 34-M HSB (m). $ $ Antenna corrections are not required for 34-M BWG & 11m VLBI stations. $ ESOFFR = 0.39838D0, $ Offset radius for the 11m VLBI stations. $ $ TROPND(1) = 0.0D0, $ Dry troposphere range correction (m). $ TROPNW(1) = 0.0D0, $ Wet troposphere range correction (m). $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Zero out and initialize station location parameters: $ ESNUM( 1) = 300*0, ESTYPE( 1) = 300*' ', ESLOCT( 1) = 300*' ', ESLOC(1, 1) = 900*0.0D0, ESNAME( 1) = 300*' ', ESCPLX( 1) = 300*0, $ ESNUM( 1) = 12, ESTYPE( 1) = '34-H-D', ESLOCT( 1) = 'CYLIND', ESLOC(1, 1) = 243.194513046D0, 3665.630988D0, 5212.0544722D0, ESNAME( 1) = 'GOLDSTONE ECHO 34-H-D', ESCPLX( 1) = 10, $ ESNUM( 2) = 13, ESTYPE( 2) = '34-BWG', ESLOCT( 2) = 'CYLIND', ESLOC(1, 2) = 243.205543701D0, 3660.912823D0, 5215.5245682D0, ESNAME( 2) = 'GOLDSTONE VENUS 34-BWG', ESCPLX( 2) = 10, $ ESNUM( 3) = 14, ESTYPE( 3) = '70-A-E', ESLOCT( 3) = 'CYLIND', ESLOC(1, 3) = 243.110463799D0, 3677.052330D0, 5203.9968973D0, ESNAME( 3) = 'GOLDSTONE MARS 64-A-E', ESCPLX( 3) = 10, $ ESNUM( 4) = 15, ESTYPE( 4) = '34-HEF', ESLOCT( 4) = 'CYLIND', ESLOC(1, 4) = 243.112806935D0, 3676.670034D0, 5204.2343194D0, ESNAME( 4) = 'GOLDSTONE 34M 34-HEF', ESCPLX( 4) = 10, $ ESNUM( 5) = 16, ESTYPE( 5) = '26-X-Y', ESLOCT( 5) = 'CYLIND', ESLOC(1, 5) = 243.126352287D0, 3669.387069D0, 5209.3707151D0, ESNAME( 5) = 'GDS5 26-X-Y', ESCPLX( 5) = 10, $ ESNUM( 6) = 17, ESTYPE( 6) = '9-X-Y' , ESLOCT( 6) = 'CYLIND', ESLOC(1, 6) = 243.126496674D0, 3669.440659D0, 5209.3240561D0, ESNAME( 6) = 'GOLDSTONE 9M 9-X-Y', ESCPLX( 6) = 10, $ ESNUM( 7) = 23, ESTYPE( 7) = '11VLBI', ESLOCT( 7) = 'CYLIND', ESLOC(1, 7) = 243.127139009D0, 3669.207824D0, 5209.4995031D0, ESNAME( 7) = 'GOLDSTONE 11M 11VLBI', ESCPLX( 7) = 10, $ ESNUM( 8) = 24, ESTYPE( 8) = '34-BWG', ESLOCT( 8) = 'CYLIND', ESLOC(1, 8) = 243.125207895D0, 3669.242317D0, 5209.4824863D0, ESNAME( 8) = 'GOLDSTONE 34M 34-BWG', ESCPLX( 8) = 10, $ ESNUM( 9) = 25, ESTYPE( 9) = '34-BWG', ESLOCT( 9) = 'CYLIND', ESLOC(1, 9) = 243.124638433D0, 3669.040895D0, 5209.6359783D0, ESNAME( 9) = 'GOLDSTONE 34M 34-BWG', ESCPLX( 9) = 10, $ ESNUM( 10) = 26, ESTYPE( 10) = '34-BWG', ESLOCT( 10) = 'CYLIND', ESLOC(1,10) = 243.126984880D0, 3668.872212D0, 5209.7669713D0, ESNAME( 10) = 'GOLDSTONE 34M 34-BWG', ESCPLX( 10) = 10, $ ESNUM( 11) = 27, ESTYPE( 11) = '34-HSB', ESLOCT( 11) = 'CYLIND', ESLOC(1,11) = 243.223351581D0, 3660.096529D0, 5216.0792441D0, ESNAME( 11) = 'GOLDSTONE 34M 34-HSB', ESCPLX( 11) = 10, $ ESNUM( 12) = 28, ESTYPE( 12) = '34-HSB', ESLOCT( 12) = 'CYLIND', ESLOC(1,12) = 243.221110863D0, 3660.103577D0, 5216.0891761D0, ESNAME( 12) = 'GOLDSTONE 34M 34-HSB', ESCPLX( 12) = 10, $ ESNUM( 13) = 33, ESTYPE( 13) = '11VLBI', ESLOCT( 13) = 'CYLIND', ESLOC(1,13) = 148.983089455D0, -3674.570392D0, 5205.3723669D0, ESNAME( 13) = 'CANBERRA 11M 11VLBI', ESCPLX( 13) = 40, $ ESNUM( 14) = 34, ESTYPE( 14) = '34-BWG', ESLOCT( 14) = 'CYLIND', ESLOC(1,14) = 148.981962157D0, -3674.375098D0, 5205.4820033D0, ESNAME( 14) = 'CANBERRA 34M 34-BWG', ESCPLX( 14) = 40, $ ESNUM( 15) = 42, ESTYPE( 15) = '34-H-D', ESLOCT( 15) = 'CYLIND', ESLOC(1,15) = 148.981264988D0, -3674.582072D0, 5205.3524323D0, ESNAME( 15) = 'CANBERRA 34-H-D', ESCPLX( 15) = 40, $ ESNUM( 16) = 43, ESTYPE( 16) = '70-A-E', ESLOCT( 16) = 'CYLIND', ESLOC(1,16) = 148.981264989D0, -3674.748540D0, 5205.2515219D0, ESNAME( 16) = 'BELLIMA 64-A-E', ESCPLX( 16) = 40, $ ESNUM( 17) = 45, ESTYPE( 17) = '34-HEF', ESLOCT( 17) = 'CYLIND', ESLOC(1,17) = 148.977683311D0, -3674.381393D0, 5205.4946968D0, ESNAME( 17) = 'CANBERRA 34M 34-HEF', ESCPLX( 17) = 40, $ ESNUM( 18) = 46, ESTYPE( 18) = '26-X-Y', ESLOCT( 18) = 'CYLIND', ESLOC(1,18) = 148.983079363D0, -3674.975508D0, 5205.0754964D0, ESNAME( 18) = 'CAN4 26-X-Y', ESCPLX( 18) = 40, $ ESNUM( 19) = 53, ESTYPE( 19) = '11VLBI', ESLOCT( 19) = 'CYLIND', ESLOC(1,19) = 355.750345311D0, 4114.758758D0, 4862.6994697D0, ESNAME( 19) = 'MADRID 11M 11VLBI', ESCPLX( 19) = 60, $ ESNUM( 20) = 54, ESTYPE( 20) = '34-BWG', ESLOCT( 20) = 'CYLIND', ESLOC(1,20) = 355.746944293D0, 4114.504583D0, 4862.9113109D0, ESNAME( 20) = 'MADRID 34M 34-BWG', ESCPLX( 20) = 60, $ ESNUM( 21) = 61, ESTYPE( 21) = '34-H-D', ESLOCT( 21) = 'CYLIND', ESLOC(1,21) = 355.750975313D0, 4114.884445D0, 4862.6103559D0, ESNAME( 21) = 'ROBLEDO 34-H-D', ESCPLX( 21) = 60, $ ESNUM( 22) = 63, ESTYPE( 22) = '70-A-E', ESLOCT( 22) = 'CYLIND', ESLOC(1,22) = 355.751988973D0, 4115.109067D0, 4862.4509267D0, ESNAME( 22) = 'ROBLEDO 210-FT 64-A-E', ESCPLX( 22) = 60, $ ESNUM( 23) = 65, ESTYPE( 23) = '34-HEF', ESLOCT( 23) = 'CYLIND', ESLOC(1,23) = 355.748579509D0, 4114.748765D0, 4862.7172271D0, ESNAME( 23) = 'MADRID 34M 34-HEF', ESCPLX( 23) = 60, $ ESNUM( 24) = 66, ESTYPE( 24) = '26-X-Y', ESLOCT( 24) = 'CYLIND', ESLOC(1,24) = 355.748531042D0, 4115.000064D0, 4862.5303889D0, ESNAME( 24) = 'MAD3 26-X-Y', ESCPLX( 24) = 60, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Station horizon masks: $ $ 1) Wolf, A. A., "50-Segment vs. 11-Segment Masks for DSN Stations $ in NAV Software," JPL IOM MGN-NAV-89-04, January 20, 1989. $ $ 2) Enright, S., "DSN Horizon Masks," JPL IOM OEA.18/12.18.E.0, $ January 7, 1991. $ $ 3) Sunseri, R. F., "New Station Masks for DSS 12, 14, 15, 16, 17, 42, $ 43, 45, 46, 61, 63, 65, AND 66," JPL IOM 314.9/91-619, March 18, 1991. $ $ ESMASK(J,K,N): $ $ ESMASK entries 'J' are in the following order (per sector): $ constraint type (where 1 = EL, 2 = HA, 3 = DEC) as a function of AZ; $ starting AZ (degrees); the five 4th degree polynomial coefficients; $ the ending AZ (degrees). $ $ Entries 'K' enumerate the sectors or the discrete polynomial segments $ (from 1 to 11) describing the horizon silhouette. $ $ Entries 'N' denote the stations. $ ESMASK(1, 1, 1) = 26400*0.0D0, $ $ Horizon mask for station 12 GOLDSTONE ECHO 34M HA-DEC $ ESMASK(1, 1, 1) = 0.20000000E+01, 0.00000000E+00, 0.26770001E+03, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.78272552E+02, ESMASK(1, 2, 1) = 0.10000000E+01, 0.78272552E+02, -0.95303301E+04, 0.34640482E+03, -0.41888137E+01, 0.16859710E-01, 0.00000000E+00, 0.89003731E+02, ESMASK(1, 3, 1) = 0.10000000E+01, 0.89003731E+02, 0.69569359E+05, -0.27941345E+04, 0.41989853E+02, -0.27979159E+00, 0.69741247E-03, 0.10533190E+03, ESMASK(1, 4, 1) = 0.10000000E+01, 0.10533190E+03, 0.10633186E+07, -0.38247000E+05, 0.51556805E+03, -0.30868518E+01, 0.69263014E-02, 0.11632820E+03, ESMASK(1, 5, 1) = 0.10000000E+01, 0.11632820E+03, 0.42380308E+04, -0.12654492E+03, 0.14084842E+01, -0.69273664E-02, 0.12707357E-04, 0.15477820E+03, ESMASK(1, 6, 1) = 0.10000000E+01, 0.15477820E+03, -0.16075879E+04, 0.32044701E+02, -0.24533567E+00, 0.86667429E-03, -0.11988418E-05, 0.19936530E+03, ESMASK(1, 7, 1) = 0.10000000E+01, 0.19936530E+03, -0.21919068E+05, 0.39109232E+03, -0.26111150E+01, 0.77328146E-02, -0.85710362E-05, 0.25539819E+03, ESMASK(1, 8, 1) = 0.10000000E+01, 0.25539819E+03, 0.42327228E+06, -0.49249419E+04, 0.19097824E+02, -0.24681104E-01, 0.00000000E+00, 0.26459210E+03, ESMASK(1, 9, 1) = 0.10000000E+01, 0.26459210E+03, 0.79551706E+06, -0.89334912E+04, 0.33436848E+02, -0.41711859E-01, 0.00000000E+00, 0.27229779E+03, ESMASK(1,10, 1) = 0.10000000E+01, 0.27229779E+03, -0.33448823E+04, 0.23990385E+02, -0.42939007E-01, 0.00000000E+00, 0.00000000E+00, 0.28144791E+03, ESMASK(1,11, 1) = 0.20000000E+01, 0.28144791E+03, 0.91800003E+02, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 13 GOLDSTONE 34 M BWG $ ESMASK(1, 1, 2) = .10000000E+01, .00000000E+00, .88413235E+01, -.10041944E+01, .15172188E+00, -.66063348E-02, .00000000E+00, .13000000E+02, ESMASK(1, 2, 2) = .10000000E+01, .13000000E+02, .70000000E+01, .00000000E+00, .00000000E+00, .00000000E+00, .00000000E+00, .31600000E+03, ESMASK(1, 3, 2) = .10000000E+01, .31600000E+03, -.54634507E+05, .64535163E+03, -.28650581E+01, .56665820E-02, -.42124064E-05, .36000000E+03, $ $ Horizon mask for station 14 GOLDSTONE MARS 70M AZ-EL (6 degrees) $ ESMASK(1, 1, 3) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 15 GOLDSTONE 34M HEF - from R. F. Sunseri $ ESMASK(1, 1, 4) = 0.10000000E+01, 0.00000000E+00, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.14000000E+03, ESMASK(1, 2, 4) = 0.10000000E+01, 0.14000000E+03, 0.31488140E+06, -0.86396767E+04, 0.88866488E+02, -0.40612354E+00, 0.69580420E-03, 0.15000000E+03, ESMASK(1, 3, 4) = 0.10000000E+01, 0.15000000E+03, -0.14169734E+04, 0.26758388E+02, -0.16661819E+00, 0.34425245E-03, 0.00000000E+00, 0.17400000E+03, ESMASK(1, 4, 4) = 0.10000000E+01, 0.17400000E+03, -0.98703660E+04, 0.21707469E+03, -0.17883522E+01, 0.65457028E-02, -0.89800872E-05, 0.19100000E+03, ESMASK(1, 5, 4) = 0.10000000E+01, 0.19100000E+03, 0.45917977E+05, -0.94315447E+03, 0.72575468E+01, -0.24790218E-01, 0.31712773E-04, 0.20400000E+03, ESMASK(1, 6, 4) = 0.10000000E+01, 0.20400000E+03, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 16 GDS5 26M X-Y $ ESMASK(1, 1, 5) = 0.10000000E+01, 0.00000000E+00, 0.42000000E+01, 0.39159119E-01, -0.37419274E-02, 0.60352892E-04, -0.21321540E-06, 0.76400000E+02, ESMASK(1, 2, 5) = 0.10000000E+01, 0.76400000E+02, -0.13565604E+05, 0.60215993E+03, -0.10026011E+02, 0.74290449E-01, -0.20669569E-03, 0.10370000E+03, ESMASK(1, 3, 5) = 0.10000000E+01, 0.10370000E+03, 0.41643831E+04, -0.13807078E+03, 0.17075052E+01, -0.93242171E-02, 0.18971043E-04, 0.14600000E+03, ESMASK(1, 4, 5) = 0.10000000E+01, 0.14600000E+03, 0.78648803E+01, -0.20605789E-01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.23110000E+03, ESMASK(1, 5, 5) = 0.10000000E+01, 0.23110000E+03, -0.35610148E+03, 0.30029595E+01, -0.62691000E-02, 0.00000000E+00, 0.00000000E+00, 0.25550000E+03, ESMASK(1, 6, 5) = 0.10000000E+01, 0.25550000E+03, -0.13182052E+07, 0.19524051E+05, -0.10844433E+03, 0.26772248E+00, -0.24786650E-03, 0.28430000E+03, ESMASK(1, 7, 5) = 0.10000000E+01, 0.28430000E+03, 0.99904725E+05, -0.10313754E+04, 0.35485840E+01, -0.40690104E-02, 0.00000000E+00, 0.29870000E+03, ESMASK(1, 8, 5) = 0.10000000E+01, 0.29870000E+03, -0.44732224E+02, 0.26238413E+00, -0.35128134E-03, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 17 GOLDSTONE 9M X-Y $ ESMASK(1, 1, 6) = .10000000E+01, .00000000E+00, .75710559E+01, .56745785E+00, -.16053176E+00, -.23797009E-01, .31366550E-02, .90000000E+01, ESMASK(1, 2, 6) = .10000000E+01, .90000000E+01, .30154251E+01, -.27452108E-01, .39314569E-03, .00000000E+00, .00000000E+00, .53000000E+02, ESMASK(1, 3, 6) = .10000000E+01, .53000000E+02, -.31640010E+02, .10188766E+01, -.56055673E-02, -.44994674E-04, .33612912E-06, .10000000E+03, ESMASK(1, 4, 6) = .10000000E+01, .10000000E+03, .39290136E+02, -.15288311E+01, .17916687E-01, -.62774104E-04, .00000000E+00, .14100000E+03, ESMASK(1, 5, 6) = .10000000E+01, .14100000E+03, -.17838515E+04, .33960661E+02, -.21419689E+00, .44869942E-03, .00000000E+00, .17400000E+03, ESMASK(1, 6, 6) = .10000000E+01, .17400000E+03, -.22633994E+06, .47924163E+04, -.38073951E+02, .13452245E+00, -.17834495E-03, .20400000E+03, ESMASK(1, 7, 6) = .10000000E+01, .20400000E+03, .95227542E+05, -.17275105E+04, .11744646E+02, -.35464648E-01, .40133387E-04, .24100000E+03, ESMASK(1, 8, 6) = .10000000E+01, .24100000E+03, .36036412E+05, -.53049295E+03, .29272307E+01, -.71755618E-02, .65933505E-05, .29600000E+03, ESMASK(1, 9, 6) = .10000000E+01, .29600000E+03, -.14245175E+07, .18945540E+05, -.94435372E+02, .20909275E+00, -.17351398E-03, .30500000E+03, ESMASK(1,10, 6) = .10000000E+01, .30500000E+03, .20434410E+05, -.24924857E+03, .11418414E+01, -.23282504E-02, .17827921E-05, .35400000E+03, ESMASK(1,11, 6) = .10000000E+01, .35400000E+03, -.18034422E+05, .96878159E+02, -.11989286E+00, -.27777778E-04, .00000000E+00, .36000000E+03, $ $ Horizon mask for station 23 GOLDSTONE 11VLBI (6 degrees) $ ESMASK(1, 1, 7) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 24 GOLDSTONE 34M BWG (6 degrees) $ ESMASK(1, 1, 8) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 25 GOLDSTONE 34M BWG (6 degrees) $ ESMASK(1, 1, 9) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 26 GOLDSTONE 34M BWG (6 degrees) $ ESMASK(1, 1,10) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 27 GOLDSTONE 34M HSB (6 degrees) $ ESMASK(1, 1,11) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 28 GOLDSTONE 34M HSB (6 degrees) $ ESMASK(1, 1,12) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 33 CANBERRA 11VLBI (6 degrees) $ ESMASK(1, 1,13) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 34 CANBERRA 34M BWG (6 degrees) $ ESMASK(1, 1,14) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 42 CANBERRA 34M HA-DEC $ ESMASK(1, 1,15) = 0.10000000E+01, 0.00000000E+00, 0.75000000E+01, -0.21720202E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.15331349E+02, ESMASK(1, 2,15) = 0.10000000E+01, 0.15331349E+02, -0.44611259E+01, 0.11000934E+01, -0.48064202E-01, 0.94749819E-03, -0.63933544E-05, 0.69000000E+02, ESMASK(1, 3,15) = 0.10000000E+01, 0.69000000E+02, 0.53716763E+02, -0.10629115E+01, 0.27988004E-02, 0.80397658E-04, -0.46864056E-06, 0.12132450E+03, ESMASK(1, 4,15) = 0.20000000E+01, 0.12132450E+03, 0.25726401E+03, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.18000000E+03, ESMASK(1, 5,15) = 0.20000000E+01, 0.18000000E+03, 0.10026200E+03, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.24639012E+03, ESMASK(1, 6,15) = 0.10000000E+01, 0.24639012E+03, -0.27832537E+02, 0.31988880E+00, -0.85958838E-03, 0.29368644E-06, 0.51562044E-09, 0.33679230E+03, ESMASK(1, 7,15) = 0.10000000E+01, 0.33679230E+03, -0.10488942E+03, 0.31219283E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 43 BELLIMA 70M AZ-EL $ ESMASK(1, 1,16) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.42562500E+02, ESMASK(1, 2,16) = 0.10000000E+01, 0.42562500E+02, -0.25039934E+03, 0.16166534E+02, -0.37341598E+00, 0.37759678E-02, -0.14128269E-04, 0.87000000E+02, ESMASK(1, 3,16) = 0.10000000E+01, 0.87000000E+02, 0.63776440E+03, -0.19990196E+02, 0.21002880E+00, -0.73100743E-03, 0.00000000E+00, 0.11292578E+03, ESMASK(1, 4,16) = 0.10000000E+01, 0.11292578E+03, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.23267383E+03, ESMASK(1, 5,16) = 0.10000000E+01, 0.23267383E+03, -0.25119053E+05, 0.30341229E+03, -0.12195134E+01, 0.16314239E-02, 0.00000000E+00, 0.24874512E+03, ESMASK(1, 6,16) = 0.10000000E+01, 0.24874512E+03, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 45 CANBERRA 34M HEF - from R. F. Sunseri $ ESMASK(1, 1,17) = 0.10000000E+01, 0.00000000E+00, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.68000000E+02, ESMASK(1, 2,17) = 0.10000000E+01, 0.68000000E+02, 0.24097240E+05, -0.12958382E+04, 0.26076850E+02, -0.23268148E+00, 0.77684081E-03, 0.80000000E+02, ESMASK(1, 3,17) = 0.10000000E+01, 0.80000000E+02, 0.94633318E+04, -0.42512078E+03, 0.71609700E+01, -0.53555049E-01, 0.15001960E-03, 0.95000000E+02, ESMASK(1, 4,17) = 0.10000000E+01, 0.95000000E+02, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.10000000E+03, ESMASK(1, 5,17) = 0.10000000E+01, 0.10000000E+03, 0.49878000E+04, -0.14455800E+03, 0.13975000E+01, -0.45000000E-02, 0.00000000E+00, 0.10300000E+03, ESMASK(1, 6,17) = 0.10000000E+01, 0.10300000E+03, -0.14829500E+03, 0.30540000E+01, -0.15000000E-01, 0.00000000E+00, 0.00000000E+00, 0.10500000E+03, ESMASK(1, 7,17) = 0.10000000E+01, 0.10500000E+03, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.11300000E+03, ESMASK(1, 8,17) = 0.10000000E+01, 0.11300000E+03, -0.15984760E+05, 0.41046000E+03, -0.35100000E+01, 0.10000000E-01, 0.00000000E+00, 0.11600000E+03, ESMASK(1, 9,17) = 0.10000000E+01, 0.11600000E+03, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.19900000E+03, ESMASK(1,10,17) = 0.10000000E+01, 0.19900000E+03, -0.60328490E+04, 0.60400000E+02, -0.15100000E+00, 0.00000000E+00, 0.00000000E+00, 0.20100000E+03, ESMASK(1,11,17) = 0.10000000E+01, 0.20100000E+03, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 46 CAN4 26M X-Y $ ESMASK(1, 1,18) = 0.10000000E+01, 0.00000000E+00, 0.25380811E+01, 0.18499543E+00, -0.11241838E-02, 0.00000000E+00, 0.00000000E+00, 0.78400000E+02, ESMASK(1, 2,18) = 0.10000000E+01, 0.78400000E+02, -0.30596504E+03, 0.71438678E+01, -0.39664356E-01, 0.00000000E+00, 0.00000000E+00, 0.10500000E+03, ESMASK(1, 3,18) = 0.10000000E+01, 0.10500000E+03, -0.60752000E+03, 0.14670667E+02, -0.11480000E+00, 0.29333333E-03, 0.00000000E+00, 0.13000000E+03, ESMASK(1, 4,18) = 0.10000000E+01, 0.13000000E+03, 0.57527477E+03, -0.12406421E+02, 0.99000311E-01, -0.34531242E-03, 0.44508798E-06, 0.25400000E+03, ESMASK(1, 5,18) = 0.10000000E+01, 0.25400000E+03, -0.29045635E+06, 0.42961485E+04, -0.23855177E+02, 0.58938691E-01, -0.54669509E-04, 0.28600000E+03, ESMASK(1, 6,18) = 0.10000000E+01, 0.28600000E+03, -0.49227926E+06, 0.65000900E+04, -0.32160346E+02, 0.70665762E-01, -0.58183973E-04, 0.32300000E+03, ESMASK(1, 7,18) = 0.10000000E+01, 0.32300000E+03, 0.80000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.33300000E+03, ESMASK(1, 8,18) = 0.10000000E+01, 0.33300000E+03, -0.32022727E+03, 0.18055556E+01, -0.25252525E-02, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 53 MADRID 11VLBI (6 degrees) $ ESMASK(1, 1,19) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 54 MADRID 34M BWG (6 degrees) $ ESMASK(1, 1,20) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 61 ROBLEDO 34M HA-DEC (LABELED 26-H-D) $ ESMASK(1, 1,21) = 0.20000000E+01, 0.00000000E+00, 0.25805301E+03, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.65831207E+02, ESMASK(1, 2,21) = 0.10000000E+01, 0.65831207E+02, 0.10459758E+02, -0.77675313E-01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.90000000E+02, ESMASK(1, 3,21) = 0.10000000E+01, 0.90000000E+02, 0.56644519E+03, -0.18895845E+02, 0.23353083E+00, -0.12591545E-02, 0.24992182E-05, 0.16023386E+03, ESMASK(1, 4,21) = 0.10000000E+01, 0.16023386E+03, -0.98384564E+03, 0.18665325E+02, -0.13708907E+00, 0.47358446E-03, -0.65782143E-06, 0.20398195E+03, ESMASK(1, 5,21) = 0.10000000E+01, 0.20398195E+03, 0.64192671E+04, -0.11018304E+03, 0.70383865E+00, -0.19836526E-02, 0.20831314E-05, 0.26500000E+03, ESMASK(1, 6,21) = 0.10000000E+01, 0.26500000E+03, -0.75402046E+04, 0.81173515E+02, -0.29088956E+00, 0.34728320E-03, 0.00000000E+00, 0.29311069E+03, ESMASK(1, 7,21) = 0.20000000E+01, 0.29311069E+03, 0.10022400E+03, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 63 ROBLEDO 210-FT 70M AZ-EL $ ESMASK(1, 1,22) = 0.10000000E+01, 0.00000000E+00, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.28389001E+03, ESMASK(1, 2,22) = 0.10000000E+01, 0.28389001E+03, -0.13014862E+06, 0.18010964E+04, -0.93353033E+01, 0.21476801E-01, -0.18501985E-04, 0.31964001E+03, ESMASK(1, 3,22) = 0.10000000E+01, 0.31964001E+03, 0.25367563E+06, -0.29985869E+04, 0.13277709E+02, -0.26100073E-01, 0.19215948E-04, 0.35531900E+03, ESMASK(1, 4,22) = 0.10000000E+01, 0.35531900E+03, 0.60000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 65 MADRID 34M HEF - from R. F. Sunseri $ ESMASK(1, 1,23) = 0.10000000E+01, 0.00000000E+00, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.32000000E+02, ESMASK(1, 2,23) = 0.10000000E+01, 0.32000000E+02, -0.16166024E+05, 0.19434577E+04, -0.87669750E+02, 0.17593333E+01, -0.13250000E-01, 0.36000000E+02, ESMASK(1, 3,23) = 0.10000000E+01, 0.36000000E+02, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.24900000E+03, ESMASK(1, 4,23) = 0.10000000E+01, 0.24900000E+03, -0.19311109E+02, 0.10555152E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.25800000E+03, ESMASK(1, 5,23) = 0.10000000E+01, 0.25800000E+03, 0.14227085E+04, -0.10694387E+02, 0.20196429E-01, 0.00000000E+00, 0.00000000E+00, 0.26500000E+03, ESMASK(1, 6,23) = 0.10000000E+01, 0.26500000E+03, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.27000000E+03, ESMASK(1, 7,23) = 0.10000000E+01, 0.27000000E+03, -0.56504197E+06, 0.80384227E+04, -0.42879921E+02, 0.10165405E+00, -0.90364797E-04, 0.28900000E+03, ESMASK(1, 8,23) = 0.10000000E+01, 0.28900000E+03, 0.70000000E+01, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, 0.29300000E+03, ESMASK(1, 9,23) = 0.10000000E+01, 0.29300000E+03, 0.11498156E+06, -0.11651606E+04, 0.39355734E+01, -0.44306527E-02, 0.00000000E+00, 0.30200000E+03, ESMASK(1,10,23) = 0.10000000E+01, 0.30200000E+03, 0.25471217E+06, -0.32142283E+04, 0.15208546E+02, -0.31979315E-01, 0.25214378E-04, 0.33800000E+03, ESMASK(1,11,23) = 0.10000000E+01, 0.33800000E+03, 0.34906007E+05, -0.30158654E+03, 0.86946695E+00, -0.83614067E-03, 0.00000000E+00, 0.36000000E+03, $ $ Horizon mask for station 66 MAD3 26M X-Y $ ESMASK(1, 1,24) = 0.10000000E+01, 0.00000000E+00, 0.12000000E+02, 0.24993513E+00, -0.40909202E-01, 0.20481065E-02, -0.29618674E-04, 0.35000000E+02, ESMASK(1, 2,24) = 0.10000000E+01, 0.35000000E+02, 0.16752528E+03, -0.10797192E+02, 0.27681503E+00, -0.31351753E-02, 0.13126965E-04, 0.75800000E+02, ESMASK(1, 3,24) = 0.10000000E+01, 0.75800000E+02, -0.64016276E+04, 0.28364077E+03, -0.47262108E+01, 0.35182332E-01, -0.98704395E-04, 0.10520000E+03, ESMASK(1, 4,24) = 0.10000000E+01, 0.10520000E+03, 0.26199076E+02, -0.53202228E+00, 0.40564820E-02, -0.95542674E-05, 0.00000000E+00, 0.19080000E+03, ESMASK(1, 5,24) = 0.10000000E+01, 0.19080000E+03, 0.93291735E+04, -0.16469364E+03, 0.10866030E+01, -0.31750667E-02, 0.34686632E-05, 0.25460000E+03, ESMASK(1, 6,24) = 0.10000000E+01, 0.25460000E+03, -0.25411207E+04, 0.18953525E+02, -0.35119688E-01, 0.00000000E+00, 0.00000000E+00, 0.28500000E+03, ESMASK(1, 7,24) = 0.10000000E+01, 0.28500000E+03, -0.25640911E+04, 0.26376951E+02, -0.90468716E-01, 0.10380442E-03, 0.00000000E+00, 0.32880000E+03, ESMASK(1, 8,24) = 0.10000000E+01, 0.32880000E+03, -0.23553326E+05, 0.20709546E+03, -0.60558409E+00, 0.58930594E-03, 0.00000000E+00, 0.36000000E+03, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ BEGIN ODP $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ PV generates partial derivatives of the state with respect to the $ other dynamic parameters. The matrix is 6 X N where N <= 200. $ PARTLS( 1) = 200*' ', $ $ State partials: $ PARTLS( 1) = 'X','Y','Z','DX','DY','DZ', $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ REGRES $ $ REGRES generates observables and partials of the observables wrt to $ the parameters listed in PARTLS for each data point on the orbit $ data file. $ $ Frequency constants: $ $ 1) DPTRAJ-ODP User's Reference Manual, Vol. 1, July 1, 1990. $ UPBAND(1,1) = 14*0.0D0, SCBAND(1) = 7*0.0D0, BNDRAT(1,1) = 49*0.0D0, $ UPBAND(1,1) = 0.0D0, 96.0D0, $ S-Band up UPBAND(1,2) = 6.5D9, 32.0D0, $ X-Band up UPBAND(1,4) = 0.0D0, 232.0D0, $ C-Band up SCBAND(1) = 1.0D0, $ F1 S-Band SCBAND(2) = 3.66666666666666667D0, $ F1 X-Band BNDRAT(1,1) = 1.08597285067873303D0, $ S-Up/S-Down band ratio, 240/221 BNDRAT(1,2) = 3.98190045248868777D0, $ S-Up/X-Down band ratio, 880/221 BNDRAT(2,1) = 0.32042723631508678D0, $ X-Up/S-Down band ratio, 240/749 BNDRAT(2,2) = 1.17489986648865153D0, $ X-Up/X-Down band ratio, 880/749 BNDRAT(4,3) = 0.33480176211453744D0, $ L-Up/C-Down band ratio, 228/681 $ STNCOR = 2, $ STNMOD( 1) = 20*.FALSE., $ STNMOD( 1) = .TRUE., $ The solid earth tide model is on. STNMOD( 4) = .TRUE., $ Polar motion. STNMOD( 6) = .TRUE., $ Lorentz contraction / relativistic scaling. STNMOD(10) = .TRUE., $ The solid earth tides are to 1st order. STNMOD(12) = .TRUE., $ ET - TAI "vector" calculation. $ TIDLOV(1) = 0.6090D0, TIDLOV(2) = 0.0852D0, TIDEPS = 0.0D0, $ Phase offset for the Earth tide (degrees). $ REFCOR = .TRUE., $ Troposphere refraction correction. LTCRIT = 0.1D0, $ LT convergence criterion (seconds, recommended). NOLT = 4, $ LT iterations (recommended). RLTBOD( 4) = .FALSE., $ Relativistic LT delay due to Mars is off. RLTBOD( 5) = .TRUE., $ Relativistic LT delay due to Jupiter is on. RLTBOD( 6) = .FALSE., $ Relativistic LT delay due to Saturn is off. RLTBOD(10) = .TRUE., $ Relativistic LT delay due to Sol is on. $ $ High Gain Antenna model (this model nominally for Mars Observer only and $ is turned off here): $ HGAON = .FALSE., $ The high gain antenna model is off. HGAON2 = .FALSE., HGAS2H = 0.0D0, $ Coordinates of the s/c HGA gimbal axes in the 0.0D0, $ S/C body coordinate system. 0.0D0, HGAH2A = 0.0D0, $ HGA phase center coordinates. 0.0D0, 0.0D0, HGAGAM = 0.0D0, $ Angle to transform between the s/c body coordinate $ system to the s/c gimbal coordinate system. $ HGATIM(1) = '17-FEB-1996 00:00:00.0000', $ $ Center of mass wrt the S/C body coordinate system: $ HGAS2C(1,1) = 300*0.0D0, $ $ Range (SRA) biases: $ FRC(1) = 15, 45, 65, ODRC(1) = '17-FEB-1996 00:00:00', DRC(2,1) = 0.0D0, ODRC(2) = '17-FEB-1996 00:00:00', DRC(2,2) = 0.0D0, ODRC(3) = '17-FEB-1996 00:00:00', DRC(2,3) = 0.0D0, $ $ One-way Doppler (F1) drift: $ DRIFT(1,1) = 204*0.0D0, ODRIFT(1) = '17-FEB-1996 00:00:00', ODRIFT(2) = '31-MAR-2000 00:00:00', $ $ Corrections between UTC and each station: $ FSTPOL(1) = 15, 45, 65, ODSTPO(1) = 100*' ', DSTPOL(1,1) = 400*0.0D0, $ $ Basically, an epoch offset between station time and UTC causes an error $ in the geometry of the computed observable. The data from the Frequency $ & Timing System Clock Reports will correct the computed observables for $ Doppler (F2) and differenced Doppler (F2MF3). $ $ The FTS Clock Reports provide the following clock epoch offset data: $ $ SPC10 - UTC; SPC40 - SPC10; SPC60 - SPC10 $ $ and this data should be applied in this manner: $ $ DSTPOL(2,1) = (SPC10 - UTC) $ DSS 15. $ DSTPOL(2,2) = (SPC10 - UTC) + (SPC40 - SPC10) $ DSS 45. $ DSTPOL(2,3) = (SPC10 - UTC) + (SPC60 - SPC10) $ DSS 65. $ $ The STOIC information file: $ UT1TYP = 'UT1R', $ $ Timing deck $ 1 - 37: A1-UTC: EPOCH(SEC), UTC(SEC), DUTC(SEC/SEC) $ 40 - 148: A1-UT1: EPOCH(SEC), UT1(SEC), DUTC(SEC/SEC) $ 151 - 331: MOTION: EPOCH(SEC), X1(ARC S), DX1(ARC S/UTC S) $ Y1(ARC S), DY1(ARC S/UTC SEC) $ TIMPOL='STOIC/KEOF.LD961024/PT970104 . PREDICTS->970104. UT1TYP=UT1R.', IT( 1)=950415,TP( 1)= -148824000., 29.000000, 0.0000E-10, IT( 4)=960101,TP( 4)= -126273600., 30.000000, 0.0000E-10, IT( 7)=100101,TP( 7)= 315576000., 45.000000, 0.0000E-10, IT( 10)=991231,TP( 10)= 0., 0.000000, 0.0000E-10, IT( 13)=991231,TP( 13)= 0., 0.000000, 0.0000E-10, IT( 16)=991231,TP( 16)= 0., 0.000000, 0.0000E-10, IT( 19)=991231,TP( 19)= 0., 0.000000, 0.0000E-10, IT( 22)=991231,TP( 22)= 0., 0.000000, 0.0000E-10, IT( 25)=991231,TP( 25)= 0., 0.000000, 0.0000E-10, IT( 28)=991231,TP( 28)= 0., 0.000000, 0.0000E-10, IT( 31)=991231,TP( 31)= 0., 0.000000, 0.0000E-10, IT( 34)=991231,TP( 34)= 0., 0.000000, 0.0000E-10, IT( 37)=991231,TP( 37)= 0., 0.000000, 0.0000E-10, IT( 40)=950415,TP( 40)= -148824000., 28.882050, 318.4430E-10, IT( 43)=950503,TP( 43)= -147268800., 28.931231, 315.7280E-10, IT( 46)=950521,TP( 46)= -145713600., 28.978901, 272.6700E-10, IT( 49)=950608,TP( 49)= -144158400., 29.019630, 249.3340E-10, IT( 52)=950626,TP( 52)= -142603200., 29.055031, 188.8750E-10, IT( 55)=950714,TP( 55)= -141048000., 29.081930, 161.7040E-10, IT( 58)=950801,TP( 58)= -139492800., 29.104891, 139.0660E-10, IT( 61)=950819,TP( 61)= -137937600., 29.130329, 189.7410E-10, IT( 64)=950906,TP( 64)= -136382400., 29.164141, 237.0330E-10, IT( 67)=950924,TP( 67)= -134827200., 29.202829, 275.7090E-10, IT( 70)=951012,TP( 70)= -133272000., 29.246260, 276.5130E-10, IT( 73)=951030,TP( 73)= -131716800., 29.286970, 276.0720E-10, IT( 76)=951117,TP( 76)= -130161600., 29.331030, 297.2430E-10, IT( 79)=951205,TP( 79)= -128606400., 29.377390, 290.5410E-10, IT( 82)=951223,TP( 82)= -127051200., 29.422079, 277.4880E-10, IT( 85)=960110,TP( 85)= -125496000., 29.461220, 226.2200E-10, IT( 88)=960128,TP( 88)= -123940800., 29.493389, 199.7020E-10, IT( 91)=960215,TP( 91)= -122385600., 29.527870, 232.5780E-10, IT( 94)=960304,TP( 94)= -120830400., 29.566561, 274.8540E-10, IT( 97)=960322,TP( 97)= -119275200., 29.607840, 251.3290E-10, IT(100)=960409,TP(100)= -117720000., 29.648899, 275.4130E-10, IT(103)=960427,TP(103)= -116164800., 29.689569, 263.9790E-10, IT(106)=960515,TP(106)= -114609600., 29.732430, 268.0240E-10, IT(109)=960602,TP(109)= -113054400., 29.767660, 194.0750E-10, IT(112)=960620,TP(112)= -111499200., 29.798000, 171.8010E-10, IT(115)=960708,TP(115)= -109944000., 29.820910, 124.6940E-10, IT(118)=960726,TP(118)= -108388800., 29.842600, 152.7400E-10, IT(121)=960813,TP(121)= -106833600., 29.863831, 119.1660E-10, IT(124)=960831,TP(124)= -105278400., 29.884670, 157.4230E-10, IT(127)=960918,TP(127)= -103723200., 29.911221, 199.7500E-10, IT(130)=961006,TP(130)= -102168000., 29.944510, 218.5800E-10, IT(133)=961024,TP(133)= -100612800., 29.980659, 233.6580E-10, IT(136)=961111,TP(136)= -99057600., 30.016769, 230.8480E-10, IT(139)=961129,TP(139)= -97502400., 30.051840, 218.1720E-10, IT(142)=961217,TP(142)= -95947200., 30.084591, 203.0600E-10, IT(145)=970104,TP(145)= -94392000., 30.115240, 192.8490E-10, IT(148)=100101,TP(148)= 315576000., 45.000000, 317.0000E-10, IT(151)=950415,TP(151)= -148824000.,0.07510,0.38670E-07,0.55570,-.44320E-08, IT(156)=950503,TP(156)= -147268800.,0.14070,0.40160E-07,0.54060,-.17720E-07, IT(161)=950521,TP(161)= -145713600.,0.19770,0.22970E-07,0.51090,-.28180E-07, IT(166)=950608,TP(166)= -144158400.,0.24040,0.32210E-07,0.46110,-.32090E-07, IT(171)=950626,TP(171)= -142603200.,0.27470,0.84680E-08,0.40250,-.41350E-07, IT(176)=950714,TP(176)= -141048000.,0.28750,0.30190E-09,0.33270,-.41240E-07, IT(181)=950801,TP(181)= -139492800.,0.27970,-.10230E-07,0.26350,-.45310E-07, IT(186)=950819,TP(186)= -137937600.,0.25330,-.23650E-07,0.19940,-.33180E-07, IT(191)=950906,TP(191)= -136382400.,0.21250,-.30580E-07,0.15200,-.22910E-07, IT(196)=950924,TP(196)= -134827200.,0.15870,-.36580E-07,0.11380,-.17730E-07, IT(201)=951012,TP(201)= -133272000.,0.09430,-.43800E-07,0.09170,-.16710E-07, IT(206)=951030,TP(206)= -131716800.,0.03190,-.40000E-07,0.08130,0.21000E-09, IT(211)=951117,TP(211)= -130161600.,-.03320,-.48690E-07,0.08950,0.16200E-07, IT(216)=951205,TP(216)= -128606400.,-.10880,-.48410E-07,0.11660,0.22620E-07, IT(221)=951223,TP(221)= -127051200.,-.15880,-.22450E-07,0.16290,0.38870E-07, IT(226)=960110,TP(226)= -125496000.,-.18870,-.21160E-07,0.21750,0.31270E-07, IT(231)=960128,TP(231)= -123940800.,-.21570,-.17900E-07,0.27680,0.43600E-07, IT(236)=960215,TP(236)= -122385600.,-.22000,0.85190E-08,0.33880,0.46450E-07, IT(241)=960304,TP(241)= -120830400.,-.21260,0.20650E-07,0.41000,0.47690E-07, IT(246)=960322,TP(246)= -119275200.,-.17720,0.23060E-07,0.47710,0.40180E-07, IT(251)=960409,TP(251)= -117720000.,-.13510,0.30810E-07,0.52430,0.29190E-07, IT(256)=960427,TP(256)= -116164800.,-.07630,0.48150E-07,0.56520,0.18930E-07, IT(261)=960515,TP(261)= -114609600.,-.00370,0.43910E-07,0.59080,0.93990E-08, IT(266)=960602,TP(266)= -113054400.,0.06990,0.49410E-07,0.59480,-.86340E-08, IT(271)=960620,TP(271)= -111499200.,0.14150,0.41660E-07,0.56880,-.20610E-07, IT(276)=960708,TP(276)= -109944000.,0.20340,0.45430E-07,0.52780,-.25920E-07, IT(281)=960726,TP(281)= -108388800.,0.24690,0.18930E-07,0.47690,-.33870E-07, IT(286)=960813,TP(286)= -106833600.,0.28010,0.23550E-07,0.41480,-.39570E-07, IT(291)=960831,TP(291)= -105278400.,0.29720,-.37760E-08,0.34700,-.52110E-07, IT(296)=960918,TP(296)= -103723200.,0.28370,-.93420E-08,0.27420,-.46990E-07, IT(301)=961006,TP(301)= -102168000.,0.25800,-.22830E-07,0.20870,-.39030E-07, IT(306)=961024,TP(306)= -100612800.,0.21450,-.30960E-07,0.15840,-.26540E-07, IT(311)=961111,TP(311)= -99057600.,0.16170,-.36830E-07,0.12370,-.17720E-07, IT(316)=961129,TP(316)= -97502400.,0.10140,-.40240E-07,0.10390,-.75830E-08, IT(321)=961217,TP(321)= -95947200.,0.03800,-.40790E-07,0.10040,0.30660E-08, IT(326)=970104,TP(326)= -94392000.,-.02400,-.38450E-07,0.11330,0.13470E-07, IT(331)=100101,TP(331)= 315576000.,0.00000,0.00000E+00,0.25000,0.00000E+00, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Earth Orientation Parameter (EOP) File $ $ 1) Herbert Royden, Section 335, JPL. $ $ A model of Earth motions. Values are updated about twice a week by TSAC. $ This file replaces the older time & polar motion (STOIC) files produced by $ TSAC in the past. A typical element follows: $ $ JPL Earth Orientation Parameter File $ Last Data Point 24-OCT-1996 $ Predicts to 15-JAN-1997 $ EOPLBL='EOP. LAST DATUM 24-OCT-1996. PREDICTS->15-JAN-1997, UT1TYP=UT1. ' EOPFNG='Enter MAKE_EOP 25-OCT-1996 22:24:11 linked 14-MAR-1996 23:32:11 EOPUT1='UT1' EOPTYP='EOP' EOPTIM='25-OCT-1996 22:24:11 ' EOPTRF='ITRF93' EOPCRF='ICRF93' $ $ MJD PM x PM y TAI-UT1 TAI-UTC dPsi dEps $ (mas) (mas) (sec) (sec) (mas) (mas) EOP= 50097.0, -197.90, 231.70, 29.470030, 30.0, -30.76, -5.31, $ 15-JAN-1996 50098.0, -199.50, 234.50, 29.471940, 30.0, -30.93, -5.35, $ 16-JAN-1996 50099.0, -201.00, 237.30, 29.473780, 30.0, -30.95, -5.49, $ 17-JAN-1996 50100.0, -202.40, 240.50, 29.475570, 30.0, -30.97, -5.77, $ 18-JAN-1996 50101.0, -203.90, 244.10, 29.477340, 30.0, -31.04, -5.99, $ 19-JAN-1996 50102.0, -205.40, 247.70, 29.479170, 30.0, -31.14, -5.94, $ 20-JAN-1996 50103.0, -206.90, 251.40, 29.481120, 30.0, -31.14, -5.66, $ 21-JAN-1996 50104.0, -208.30, 254.90, 29.483210, 30.0, -30.90, -5.43, $ 22-JAN-1996 50105.0, -209.60, 258.40, 29.485360, 30.0, -30.54, -5.39, $ 23-JAN-1996 50106.0, -210.80, 262.00, 29.487480, 30.0, -30.35, -5.41, $ 24-JAN-1996 50107.0, -211.80, 265.60, 29.489520, 30.0, -30.57, -5.36, $ 25-JAN-1996 50108.0, -212.90, 269.30, 29.491440, 30.0, -31.02, -5.34, $ 26-JAN-1996 50109.0, -214.20, 273.10, 29.493240, 30.0, -31.33, -5.47, $ 27-JAN-1996 50110.0, -215.70, 276.80, 29.494900, 30.0, -31.37, -5.71, $ 28-JAN-1996 50111.0, -217.20, 280.60, 29.496430, 30.0, -31.40, -5.90, $ 29-JAN-1996 50112.0, -218.70, 284.20, 29.497870, 30.0, -31.55, -6.02, $ 30-JAN-1996 50113.0, -220.00, 287.70, 29.499240, 30.0, -31.65, -6.10, $ 31-JAN-1996 50114.0, -221.00, 291.20, 29.500620, 30.0, -31.50, -6.18, $ 1-FEB-1996 50115.0, -221.70, 294.70, 29.502050, 30.0, -31.20, -6.21, $ 2-FEB-1996 50116.0, -222.20, 298.40, 29.503600, 30.0, -30.92, -6.19, $ 3-FEB-1996 50117.0, -222.50, 302.20, 29.505260, 30.0, -30.71, -6.16, $ 4-FEB-1996 50118.0, -222.80, 306.00, 29.507030, 30.0, -30.48, -6.20, $ 5-FEB-1996 50119.0, -223.30, 309.80, 29.508910, 30.0, -30.26, -6.32, $ 6-FEB-1996 50120.0, -223.80, 313.40, 29.510900, 30.0, -30.18, -6.42, $ 7-FEB-1996 50121.0, -224.20, 316.70, 29.512980, 30.0, -30.29, -6.42, $ 8-FEB-1996 50122.0, -224.30, 319.80, 29.515120, 30.0, -30.54, -6.33, $ 9-FEB-1996 50123.0, -224.10, 322.70, 29.517260, 30.0, -30.81, -6.24, $ 10-FEB-1996 50124.0, -223.60, 325.60, 29.519360, 30.0, -31.08, -6.23, $ 11-FEB-1996 50125.0, -222.80, 328.50, 29.521400, 30.0, -31.31, -6.32, $ 12-FEB-1996 50126.0, -221.80, 331.60, 29.523380, 30.0, -31.48, -6.45, $ 13-FEB-1996 50127.0, -220.80, 335.00, 29.525310, 30.0, -31.59, -6.65, $ 14-FEB-1996 50128.0, -220.00, 338.80, 29.527250, 30.0, -31.70, -6.91, $ 15-FEB-1996 50129.0, -219.40, 343.00, 29.529240, 30.0, -31.82, -7.10, $ 16-FEB-1996 50130.0, -219.20, 347.20, 29.531360, 30.0, -31.91, -7.01, $ 17-FEB-1996 50131.0, -219.40, 351.60, 29.533690, 30.0, -31.87, -6.70, $ 18-FEB-1996 50132.0, -219.90, 355.80, 29.536160, 30.0, -31.64, -6.46, $ 19-FEB-1996 50133.0, -220.40, 359.70, 29.538730, 30.0, -31.29, -6.48, $ 20-FEB-1996 50134.0, -220.90, 363.30, 29.541310, 30.0, -31.08, -6.67, $ 21-FEB-1996 50135.0, -221.30, 366.60, 29.543820, 30.0, -31.21, -6.83, $ 22-FEB-1996 50136.0, -221.50, 369.90, 29.546180, 30.0, -31.58, -6.91, $ 23-FEB-1996 50137.0, -221.40, 373.40, 29.548330, 30.0, -31.89, -6.99, $ 24-FEB-1996 50138.0, -221.20, 377.30, 29.550280, 30.0, -32.02, -7.12, $ 25-FEB-1996 50139.0, -220.80, 381.30, 29.552110, 30.0, -32.10, -7.27, $ 26-FEB-1996 50140.0, -220.30, 385.50, 29.553910, 30.0, -32.24, -7.42, $ 27-FEB-1996 50141.0, -219.70, 389.60, 29.555690, 30.0, -32.23, -7.58, $ 28-FEB-1996 50142.0, -218.80, 393.70, 29.557460, 30.0, -31.89, -7.72, $ 29-FEB-1996 50143.0, -217.50, 397.80, 29.559310, 30.0, -31.34, -7.77, $ 1-MAR-1996 50144.0, -216.00, 401.80, 29.561310, 30.0, -30.92, -7.74, $ 2-MAR-1996 50145.0, -214.30, 405.90, 29.563440, 30.0, -30.71, -7.69, $ 3-MAR-1996 50146.0, -212.60, 410.00, 29.565720, 30.0, -30.56, -7.68, $ 4-MAR-1996 50147.0, -210.80, 414.10, 29.568140, 30.0, -30.42, -7.71, $ 5-MAR-1996 50148.0, -208.90, 418.30, 29.570650, 30.0, -30.39, -7.74, $ 6-MAR-1996 50149.0, -207.20, 422.30, 29.573240, 30.0, -30.59, -7.75, $ 7-MAR-1996 50150.0, -205.50, 426.10, 29.575850, 30.0, -30.87, -7.77, $ 8-MAR-1996 50151.0, -204.00, 429.80, 29.578460, 30.0, -31.06, -7.82, $ 9-MAR-1996 50152.0, -202.60, 433.30, 29.581030, 30.0, -31.11, -7.93, $ 10-MAR-1996 50153.0, -201.20, 436.70, 29.583560, 30.0, -31.10, -8.08, $ 11-MAR-1996 50154.0, -199.80, 440.10, 29.586000, 30.0, -31.10, -8.23, $ 12-MAR-1996 50155.0, -198.30, 443.50, 29.588300, 30.0, -31.11, -8.40, $ 13-MAR-1996 50156.0, -196.60, 447.00, 29.590500, 30.0, -31.11, -8.58, $ 14-MAR-1996 50157.0, -194.60, 450.60, 29.592680, 30.0, -31.07, -8.70, $ 15-MAR-1996 50158.0, -192.40, 454.30, 29.594920, 30.0, -30.99, -8.60, $ 16-MAR-1996 50159.0, -189.90, 458.10, 29.597240, 30.0, -30.86, -8.32, $ 17-MAR-1996 50160.0, -187.20, 461.90, 29.599610, 30.0, -30.72, -8.08, $ 18-MAR-1996 50161.0, -184.40, 465.80, 29.602030, 30.0, -30.62, -8.09, $ 19-MAR-1996 50162.0, -181.70, 469.70, 29.604470, 30.0, -30.63, -8.33, $ 20-MAR-1996 50163.0, -179.30, 473.50, 29.606870, 30.0, -30.75, -8.62, $ 21-MAR-1996 50164.0, -177.20, 477.10, 29.609150, 30.0, -30.95, -8.78, $ 22-MAR-1996 50165.0, -175.20, 480.40, 29.611320, 30.0, -31.14, -8.80, $ 23-MAR-1996 50166.0, -173.20, 483.50, 29.613360, 30.0, -31.29, -8.78, $ 24-MAR-1996 50167.0, -171.00, 486.30, 29.615310, 30.0, -31.43, -8.82, $ 25-MAR-1996 50168.0, -168.40, 489.00, 29.617200, 30.0, -31.48, -8.96, $ 26-MAR-1996 50169.0, -165.70, 491.70, 29.619060, 30.0, -31.31, -9.13, $ 27-MAR-1996 50170.0, -162.90, 494.60, 29.620930, 30.0, -30.84, -9.25, $ 28-MAR-1996 50171.0, -160.00, 497.40, 29.622860, 30.0, -30.27, -9.28, $ 29-MAR-1996 50172.0, -157.10, 500.40, 29.624890, 30.0, -29.89, -9.23, $ 30-MAR-1996 50173.0, -154.50, 503.50, 29.627020, 30.0, -29.84, -9.19, $ 31-MAR-1996 50174.0, -152.00, 506.60, 29.629240, 30.0, -29.95, -9.19, $ 1-APR-1996 50175.0, -149.70, 509.50, 29.631610, 30.0, -30.07, -9.17, $ 2-APR-1996 50176.0, -147.70, 512.10, 29.634090, 30.0, -30.18, -9.10, $ 3-APR-1996 50177.0, -145.80, 514.40, 29.636590, 30.0, -30.34, -9.02, $ 4-APR-1996 50178.0, -143.90, 516.30, 29.639100, 30.0, -30.50, -9.04, $ 5-APR-1996 50179.0, -142.00, 518.10, 29.641580, 30.0, -30.57, -9.23, $ 6-APR-1996 50180.0, -139.90, 519.90, 29.644000, 30.0, -30.53, -9.50, $ 7-APR-1996 50181.0, -137.60, 522.00, 29.646340, 30.0, -30.45, -9.73, $ 8-APR-1996 50182.0, -135.10, 524.30, 29.648630, 30.0, -30.42, -9.82, $ 9-APR-1996 50183.0, -132.30, 527.00, 29.650890, 30.0, -30.45, -9.82, $ 10-APR-1996 50184.0, -129.50, 529.80, 29.653200, 30.0, -30.44, -9.81, $ 11-APR-1996 50185.0, -126.40, 532.70, 29.655600, 30.0, -30.32, -9.80, $ 12-APR-1996 50186.0, -123.20, 535.40, 29.658080, 30.0, -30.05, -9.72, $ 13-APR-1996 50187.0, -119.80, 538.10, 29.660650, 30.0, -29.74, -9.52, $ 14-APR-1996 50188.0, -116.30, 540.60, 29.663230, 30.0, -29.57, -9.32, $ 15-APR-1996 50189.0, -112.80, 543.20, 29.665790, 30.0, -29.68, -9.26, $ 16-APR-1996 50190.0, -109.60, 545.80, 29.668280, 30.0, -29.99, -9.38, $ 17-APR-1996 50191.0, -106.50, 548.40, 29.670660, 30.0, -30.27, -9.61, $ 18-APR-1996 50192.0, -103.40, 551.00, 29.672860, 30.0, -30.37, -9.77, $ 19-APR-1996 50193.0, -100.40, 553.30, 29.674920, 30.0, -30.39, -9.80, $ 20-APR-1996 50194.0, -97.40, 555.40, 29.676870, 30.0, -30.45, -9.76, $ 21-APR-1996 50195.0, -94.30, 557.30, 29.678790, 30.0, -30.55, -9.76, $ 22-APR-1996 50196.0, -91.10, 559.00, 29.680700, 30.0, -30.56, -9.89, $ 23-APR-1996 50197.0, -87.70, 560.60, 29.682600, 30.0, -30.36, -10.08, $ 24-APR-1996 50198.0, -84.20, 562.10, 29.684540, 30.0, -30.01, -10.18, $ 25-APR-1996 50199.0, -80.30, 563.60, 29.686560, 30.0, -29.63, -10.16, $ 26-APR-1996 50200.0, -76.30, 565.20, 29.688690, 30.0, -29.40, -10.07, $ 27-APR-1996 50201.0, -72.10, 566.90, 29.690930, 30.0, -29.42, -10.02, $ 28-APR-1996 50202.0, -68.00, 568.90, 29.693300, 30.0, -29.70, -10.03, $ 29-APR-1996 50203.0, -63.90, 571.10, 29.695760, 30.0, -30.09, -10.04, $ 30-APR-1996 50204.0, -60.10, 573.30, 29.698330, 30.0, -30.41, -9.95, $ 1-MAY-1996 50205.0, -56.50, 575.30, 29.700970, 30.0, -30.57, -9.78, $ 2-MAY-1996 50206.0, -52.90, 577.00, 29.703590, 30.0, -30.61, -9.69, $ 3-MAY-1996 50207.0, -49.30, 578.50, 29.706150, 30.0, -30.59, -9.86, $ 4-MAY-1996 50208.0, -45.60, 579.80, 29.708610, 30.0, -30.56, -10.23, $ 5-MAY-1996 50209.0, -41.70, 581.10, 29.710990, 30.0, -30.56, -10.53, $ 6-MAY-1996 50210.0, -37.70, 582.30, 29.713320, 30.0, -30.61, -10.55, $ 7-MAY-1996 50211.0, -33.60, 583.50, 29.715670, 30.0, -30.71, -10.34, $ 8-MAY-1996 50212.0, -29.40, 584.60, 29.718070, 30.0, -30.83, -10.09, $ 9-MAY-1996 50213.0, -25.00, 585.70, 29.720570, 30.0, -30.85, -9.94, $ 10-MAY-1996 50214.0, -20.60, 586.80, 29.723170, 30.0, -30.68, -9.87, $ 11-MAY-1996 50215.0, -16.20, 587.90, 29.725830, 30.0, -30.35, -9.82, $ 12-MAY-1996 50216.0, -11.90, 588.90, 29.728510, 30.0, -30.10, -9.75, $ 13-MAY-1996 50217.0, -7.70, 589.90, 29.731130, 30.0, -30.18, -9.69, $ 14-MAY-1996 50218.0, -3.70, 590.80, 29.733630, 30.0, -30.60, -9.67, $ 15-MAY-1996 50219.0, -0.10, 591.50, 29.735980, 30.0, -31.05, -9.71, $ 16-MAY-1996 50220.0, 3.40, 592.20, 29.738160, 30.0, -31.27, -9.80, $ 17-MAY-1996 50221.0, 6.70, 592.80, 29.740180, 30.0, -31.25, -9.88, $ 18-MAY-1996 50222.0, 10.10, 593.20, 29.742070, 30.0, -31.17, -9.93, $ 19-MAY-1996 50223.0, 13.50, 593.60, 29.743870, 30.0, -31.12, -9.99, $ 20-MAY-1996 50224.0, 17.10, 593.90, 29.745580, 30.0, -31.06, -10.10, $ 21-MAY-1996 50225.0, 20.90, 594.10, 29.747250, 30.0, -30.95, -10.23, $ 22-MAY-1996 50226.0, 25.10, 594.20, 29.748930, 30.0, -30.87, -10.30, $ 23-MAY-1996 50227.0, 29.70, 594.30, 29.750640, 30.0, -30.80, -10.27, $ 24-MAY-1996 50228.0, 34.50, 594.50, 29.752400, 30.0, -30.66, -10.15, $ 25-MAY-1996 50229.0, 39.40, 594.80, 29.754250, 30.0, -30.56, -10.03, $ 26-MAY-1996 50230.0, 44.20, 595.10, 29.756170, 30.0, -30.74, -9.99, $ 27-MAY-1996 50231.0, 48.90, 595.40, 29.758130, 30.0, -31.27, -10.01, $ 28-MAY-1996 50232.0, 53.40, 595.60, 29.760100, 30.0, -31.89, -9.94, $ 29-MAY-1996 50233.0, 57.50, 595.70, 29.762050, 30.0, -32.24, -9.76, $ 30-MAY-1996 50234.0, 61.50, 595.70, 29.763920, 30.0, -32.28, -9.55, $ 31-MAY-1996 50235.0, 65.60, 595.40, 29.765710, 30.0, -32.22, -9.59, $ 1-JUN-1996 50236.0, 69.90, 594.80, 29.767400, 30.0, -32.21, -9.89, $ 2-JUN-1996 50237.0, 74.10, 593.90, 29.769040, 30.0, -32.27, -10.20, $ 3-JUN-1996 50238.0, 78.40, 592.80, 29.770710, 30.0, -32.36, -10.18, $ 4-JUN-1996 50239.0, 82.50, 591.60, 29.772450, 30.0, -32.48, -9.87, $ 5-JUN-1996 50240.0, 86.40, 590.30, 29.774290, 30.0, -32.67, -9.52, $ 6-JUN-1996 50241.0, 90.20, 589.00, 29.776210, 30.0, -32.92, -9.31, $ 7-JUN-1996 50242.0, 93.80, 587.70, 29.778200, 30.0, -33.09, -9.25, $ 8-JUN-1996 50243.0, 97.40, 586.50, 29.780240, 30.0, -33.10, -9.31, $ 9-JUN-1996 50244.0, 101.10, 585.20, 29.782300, 30.0, -32.98, -9.42, $ 10-JUN-1996 50245.0, 105.00, 583.90, 29.784300, 30.0, -32.93, -9.50, $ 11-JUN-1996 50246.0, 109.10, 582.50, 29.786200, 30.0, -33.17, -9.50, $ 12-JUN-1996 50247.0, 113.30, 581.00, 29.787940, 30.0, -33.65, -9.45, $ 13-JUN-1996 50248.0, 117.60, 579.50, 29.789520, 30.0, -34.10, -9.43, $ 14-JUN-1996 50249.0, 121.90, 578.00, 29.790960, 30.0, -34.29, -9.52, $ 15-JUN-1996 50250.0, 126.10, 576.40, 29.792260, 30.0, -34.24, -9.64, $ 16-JUN-1996 50251.0, 130.20, 574.60, 29.793500, 30.0, -34.03, -9.72, $ 17-JUN-1996 50252.0, 134.10, 572.60, 29.794720, 30.0, -33.82, -9.72, $ 18-JUN-1996 50253.0, 137.80, 570.60, 29.795930, 30.0, -33.75, -9.70, $ 19-JUN-1996 50254.0, 141.50, 568.80, 29.797190, 30.0, -33.91, -9.69, $ 20-JUN-1996 50255.0, 145.10, 567.10, 29.798520, 30.0, -34.12, -9.69, $ 21-JUN-1996 50256.0, 148.70, 565.50, 29.799960, 30.0, -34.11, -9.65, $ 22-JUN-1996 50257.0, 152.40, 564.10, 29.801500, 30.0, -33.89, -9.56, $ 23-JUN-1996 50258.0, 156.10, 562.70, 29.803070, 30.0, -33.86, -9.46, $ 24-JUN-1996 50259.0, 159.70, 561.20, 29.804660, 30.0, -34.37, -9.43, $ 25-JUN-1996 50260.0, 163.10, 559.30, 29.806210, 30.0, -35.21, -9.42, $ 26-JUN-1996 50261.0, 166.30, 557.00, 29.807710, 30.0, -35.85, -9.32, $ 27-JUN-1996 50262.0, 169.40, 554.40, 29.809140, 30.0, -36.04, -9.13, $ 28-JUN-1996 50263.0, 172.60, 551.60, 29.810460, 30.0, -35.96, -9.07, $ 29-JUN-1996 50264.0, 175.80, 548.80, 29.811710, 30.0, -35.90, -9.25, $ 30-JUN-1996 50265.0, 179.00, 546.00, 29.812890, 30.0, -35.96, -9.47, $ 1-JUL-1996 50266.0, 182.10, 543.30, 29.814070, 30.0, -36.09, -9.45, $ 2-JUL-1996 50267.0, 185.30, 540.70, 29.815320, 30.0, -36.23, -9.19, $ 3-JUL-1996 50268.0, 188.60, 537.90, 29.816680, 30.0, -36.40, -8.93, $ 4-JUL-1996 50269.0, 192.00, 535.20, 29.818130, 30.0, -36.65, -8.83, $ 5-JUL-1996 50270.0, 195.70, 532.50, 29.819600, 30.0, -37.03, -8.80, $ 6-JUL-1996 50271.0, 199.50, 530.10, 29.821010, 30.0, -37.44, -8.83, $ 7-JUL-1996 50272.0, 203.40, 527.80, 29.822340, 30.0, -37.66, -8.95, $ 8-JUL-1996 50273.0, 207.30, 525.50, 29.823560, 30.0, -37.61, -9.16, $ 9-JUL-1996 50274.0, 211.20, 523.10, 29.824650, 30.0, -37.54, -9.33, $ 10-JUL-1996 50275.0, 214.90, 520.40, 29.825640, 30.0, -37.74, -9.36, $ 11-JUL-1996 50276.0, 218.40, 517.60, 29.826550, 30.0, -38.20, -9.34, $ 12-JUL-1996 50277.0, 221.70, 514.60, 29.827400, 30.0, -38.61, -9.37, $ 13-JUL-1996 50278.0, 224.90, 511.70, 29.828210, 30.0, -38.67, -9.45, $ 14-JUL-1996 50279.0, 227.80, 508.60, 29.829040, 30.0, -38.41, -9.45, $ 15-JUL-1996 50280.0, 230.60, 505.50, 29.829910, 30.0, -38.08, -9.33, $ 16-JUL-1996 50281.0, 233.10, 502.40, 29.830850, 30.0, -37.93, -9.14, $ 17-JUL-1996 50282.0, 235.30, 499.50, 29.831860, 30.0, -38.09, -9.02, $ 18-JUL-1996 50283.0, 237.20, 496.60, 29.832960, 30.0, -38.39, -9.06, $ 19-JUL-1996 50284.0, 238.70, 493.80, 29.834150, 30.0, -38.52, -9.19, $ 20-JUL-1996 50285.0, 240.10, 491.00, 29.835410, 30.0, -38.35, -9.24, $ 21-JUL-1996 50286.0, 241.40, 488.20, 29.836690, 30.0, -38.21, -9.19, $ 22-JUL-1996 50287.0, 242.70, 485.50, 29.838000, 30.0, -38.50, -9.14, $ 23-JUL-1996 50288.0, 244.00, 482.70, 29.839330, 30.0, -39.21, -9.16, $ 24-JUL-1996 50289.0, 245.40, 479.90, 29.840660, 30.0, -39.90, -9.17, $ 25-JUL-1996 50290.0, 246.90, 476.90, 29.841960, 30.0, -40.19, -9.13, $ 26-JUL-1996 50291.0, 248.60, 474.00, 29.843210, 30.0, -40.10, -9.11, $ 27-JUL-1996 50292.0, 250.50, 471.20, 29.844440, 30.0, -39.96, -9.21, $ 28-JUL-1996 50293.0, 252.40, 468.50, 29.845710, 30.0, -39.98, -9.30, $ 29-JUL-1996 50294.0, 254.20, 465.70, 29.847080, 30.0, -40.18, -9.22, $ 30-JUL-1996 50295.0, 256.00, 462.80, 29.848620, 30.0, -40.40, -9.01, $ 31-JUL-1996 50296.0, 257.60, 459.70, 29.850310, 30.0, -40.51, -8.90, $ 1-AUG-1996 50297.0, 259.00, 456.30, 29.852080, 30.0, -40.56, -8.95, $ 2-AUG-1996 50298.0, 260.40, 452.70, 29.853810, 30.0, -40.78, -8.97, $ 3-AUG-1996 50299.0, 261.90, 448.80, 29.855410, 30.0, -41.28, -8.86, $ 4-AUG-1996 50300.0, 263.50, 444.80, 29.856800, 30.0, -41.79, -8.76, $ 5-AUG-1996 50301.0, 265.20, 440.70, 29.858000, 30.0, -41.94, -8.86, $ 6-AUG-1996 50302.0, 267.30, 436.60, 29.859020, 30.0, -41.74, -9.11, $ 7-AUG-1996 50303.0, 269.50, 432.70, 29.859860, 30.0, -41.59, -9.32, $ 8-AUG-1996 50304.0, 271.80, 428.90, 29.860620, 30.0, -41.75, -9.40, $ 9-AUG-1996 50305.0, 274.00, 425.20, 29.861340, 30.0, -42.03, -9.42, $ 10-AUG-1996 50306.0, 276.00, 421.60, 29.862000, 30.0, -42.08, -9.42, $ 11-AUG-1996 50307.0, 278.00, 418.20, 29.862700, 30.0, -41.86, -9.34, $ 12-AUG-1996 50308.0, 280.10, 414.80, 29.863450, 30.0, -41.56, -9.14, $ 13-AUG-1996 50309.0, 282.10, 411.30, 29.864250, 30.0, -41.41, -8.89, $ 14-AUG-1996 50310.0, 283.90, 407.70, 29.865160, 30.0, -41.44, -8.73, $ 15-AUG-1996 50311.0, 285.60, 404.10, 29.866160, 30.0, -41.62, -8.76, $ 16-AUG-1996 50312.0, 287.10, 400.50, 29.867250, 30.0, -41.80, -8.91, $ 17-AUG-1996 50313.0, 288.50, 396.90, 29.868410, 30.0, -41.83, -9.06, $ 18-AUG-1996 50314.0, 289.90, 393.40, 29.869580, 30.0, -41.75, -9.09, $ 19-AUG-1996 50315.0, 291.20, 389.90, 29.870740, 30.0, -41.80, -9.05, $ 20-AUG-1996 50316.0, 292.50, 386.40, 29.871880, 30.0, -42.08, -9.06, $ 21-AUG-1996 50317.0, 293.70, 382.90, 29.873010, 30.0, -42.47, -9.13, $ 22-AUG-1996 50318.0, 294.70, 379.30, 29.874130, 30.0, -42.67, -9.20, $ 23-AUG-1996 50319.0, 295.60, 375.70, 29.875260, 30.0, -42.60, -9.28, $ 24-AUG-1996 50320.0, 296.30, 372.00, 29.876390, 30.0, -42.44, -9.36, $ 25-AUG-1996 50321.0, 296.80, 368.20, 29.877600, 30.0, -42.41, -9.35, $ 26-AUG-1996 50322.0, 297.20, 364.20, 29.878930, 30.0, -42.60, -9.16, $ 27-AUG-1996 50323.0, 297.50, 360.10, 29.880440, 30.0, -42.85, -8.89, $ 28-AUG-1996 50324.0, 297.60, 355.90, 29.882120, 30.0, -42.93, -8.80, $ 29-AUG-1996 50325.0, 297.50, 351.50, 29.883900, 30.0, -42.81, -8.93, $ 30-AUG-1996 50326.0, 297.20, 347.00, 29.885700, 30.0, -42.75, -9.02, $ 31-AUG-1996 50327.0, 296.90, 342.50, 29.887400, 30.0, -43.05, -8.86, $ 1-SEP-1996 50328.0, 296.50, 338.00, 29.888920, 30.0, -43.62, -8.57, $ 2-SEP-1996 50329.0, 296.00, 333.70, 29.890270, 30.0, -43.99, -8.44, $ 3-SEP-1996 50330.0, 295.60, 329.50, 29.891470, 30.0, -43.95, -8.60, $ 4-SEP-1996 50331.0, 295.10, 325.30, 29.892550, 30.0, -43.67, -8.89, $ 5-SEP-1996 50332.0, 294.60, 321.20, 29.893510, 30.0, -43.47, -9.14, $ 6-SEP-1996 50333.0, 294.10, 317.20, 29.894440, 30.0, -43.36, -9.25, $ 7-SEP-1996 50334.0, 293.60, 313.30, 29.895390, 30.0, -43.18, -9.26, $ 8-SEP-1996 50335.0, 293.10, 309.50, 29.896390, 30.0, -42.95, -9.16, $ 9-SEP-1996 50336.0, 292.60, 305.70, 29.897490, 30.0, -42.80, -9.00, $ 10-SEP-1996 50337.0, 291.90, 302.00, 29.898770, 30.0, -42.77, -8.82, $ 11-SEP-1996 50338.0, 291.00, 298.40, 29.900260, 30.0, -42.77, -8.68, $ 12-SEP-1996 50339.0, 289.90, 294.70, 29.901940, 30.0, -42.80, -8.60, $ 13-SEP-1996 50340.0, 288.60, 290.80, 29.903720, 30.0, -42.92, -8.60, $ 14-SEP-1996 50341.0, 287.20, 286.70, 29.905530, 30.0, -43.11, -8.64, $ 15-SEP-1996 50342.0, 285.90, 282.50, 29.907320, 30.0, -43.21, -8.68, $ 16-SEP-1996 50343.0, 284.60, 278.30, 29.909080, 30.0, -43.14, -8.69, $ 17-SEP-1996 50344.0, 283.70, 274.20, 29.910770, 30.0, -43.02, -8.72, $ 18-SEP-1996 50345.0, 283.00, 270.20, 29.912370, 30.0, -42.99, -8.79, $ 19-SEP-1996 50346.0, 282.40, 266.30, 29.913920, 30.0, -43.01, -8.87, $ 20-SEP-1996 50347.0, 281.80, 262.80, 29.915500, 30.0, -42.95, -8.97, $ 21-SEP-1996 50348.0, 280.90, 259.40, 29.917180, 30.0, -42.81, -9.02, $ 22-SEP-1996 50349.0, 279.90, 256.00, 29.919000, 30.0, -42.69, -8.95, $ 23-SEP-1996 50350.0, 278.60, 252.50, 29.921010, 30.0, -42.69, -8.69, $ 24-SEP-1996 50351.0, 277.10, 248.80, 29.923220, 30.0, -42.78, -8.35, $ 25-SEP-1996 50352.0, 275.40, 245.00, 29.925550, 30.0, -42.80, -8.18, $ 26-SEP-1996 50353.0, 273.70, 241.20, 29.927920, 30.0, -42.67, -8.26, $ 27-SEP-1996 50354.0, 272.00, 237.40, 29.930210, 30.0, -42.52, -8.42, $ 28-SEP-1996 50355.0, 270.30, 233.80, 29.932370, 30.0, -42.58, -8.39, $ 29-SEP-1996 50356.0, 268.70, 230.30, 29.934390, 30.0, -42.89, -8.15, $ 30-SEP-1996 50357.0, 267.10, 226.80, 29.936260, 30.0, -43.20, -7.93, $ 1-OCT-1996 50358.0, 265.40, 223.20, 29.938010, 30.0, -43.24, -7.96, $ 2-OCT-1996 50359.0, 263.70, 219.50, 29.939660, 30.0, -42.97, -8.20, $ 3-OCT-1996 50360.0, 261.80, 215.80, 29.941250, 30.0, -42.54, -8.50, $ 4-OCT-1996 50361.0, 259.90, 212.10, 29.942820, 30.0, -42.08, -8.70, $ 5-OCT-1996 50362.0, 258.00, 208.70, 29.944420, 30.0, -41.64, -8.76, $ 6-OCT-1996 50363.0, 256.00, 205.40, 29.946060, 30.0, -41.35, -8.69, $ 7-OCT-1996 50364.0, 253.90, 202.30, 29.947780, 30.0, -41.28, -8.58, $ 8-OCT-1996 50365.0, 251.70, 199.40, 29.949610, 30.0, -41.37, -8.47, $ 9-OCT-1996 50366.0, 249.40, 196.50, 29.951560, 30.0, -41.42, -8.33, $ 10-OCT-1996 50367.0, 247.00, 193.60, 29.953600, 30.0, -41.39, -8.14, $ 11-OCT-1996 50368.0, 244.60, 190.60, 29.955690, 30.0, -41.44, -7.92, $ 12-OCT-1996 50369.0, 242.20, 187.70, 29.957780, 30.0, -41.61, -7.77, $ 13-OCT-1996 50370.0, 239.90, 184.70, 29.959880, 30.0, -41.75, -7.75, $ 14-OCT-1996 50371.0, 237.50, 181.80, 29.961960, 30.0, -41.65, -7.86, $ 15-OCT-1996 50372.0, 235.10, 178.90, 29.963980, 30.0, -41.37, -8.00, $ 16-OCT-1996 50373.0, 232.60, 176.10, 29.965940, 30.0, -41.12, -8.09, $ 17-OCT-1996 50374.0, 230.10, 173.30, 29.967850, 30.0, -41.03, -8.08, $ 18-OCT-1996 50375.0, 227.50, 170.60, 29.969800, 30.0, -41.03, -8.02, $ 19-OCT-1996 50376.0, 225.00, 168.00, 29.971830, 30.0, -40.98, -7.96, $ 20-OCT-1996 50377.0, 222.40, 165.50, 29.973970, 30.0, -40.82, -7.85, $ 21-OCT-1996 50378.0, 219.80, 163.10, 29.976240, 30.0, -40.64, -7.62, $ 22-OCT-1996 50379.0, 217.20, 160.70, 29.978600, 30.0, -40.52, -7.32, $ 23-OCT-1996 50380.0, 214.50, 158.40, 29.981020, 30.0, -40.49, -7.11, $ 24-OCT-1996 50381.0, 211.80, 156.20, 29.983430, 30.0, -40.52, -7.12, $ 25-OCT-1996 50382.0, 209.10, 153.90, 29.985760, 30.0, -40.55, -7.28, $ 26-OCT-1996 50383.0, 206.40, 151.70, 29.987950, 30.0, -40.53, -7.38, $ 27-OCT-1996 50384.0, 203.60, 149.60, 29.989980, 30.0, -40.50, -7.33, $ 28-OCT-1996 50385.0, 200.80, 147.50, 29.991860, 30.0, -40.46, -7.19, $ 29-OCT-1996 50386.0, 198.00, 145.30, 29.993620, 30.0, -40.35, -7.13, $ 30-OCT-1996 50387.0, 195.20, 143.30, 29.995330, 30.0, -40.08, -7.22, $ 31-OCT-1996 50388.0, 192.30, 141.30, 29.997010, 30.0, -39.62, -7.42, $ 1-NOV-1996 50389.0, 189.30, 139.30, 29.998710, 30.0, -39.07, -7.58, $ 2-NOV-1996 50390.0, 186.40, 137.40, 30.000450, 30.0, -38.60, -7.62, $ 3-NOV-1996 50391.0, 183.40, 135.60, 30.002270, 30.0, -38.35, -7.55, $ 4-NOV-1996 50392.0, 180.40, 133.70, 30.004170, 30.0, -38.32, -7.44, $ 5-NOV-1996 50393.0, 177.30, 132.00, 30.006150, 30.0, -38.41, -7.34, $ 6-NOV-1996 50394.0, 174.20, 130.20, 30.008200, 30.0, -38.51, -7.19, $ 7-NOV-1996 50395.0, 171.10, 128.50, 30.010290, 30.0, -38.59, -6.97, $ 8-NOV-1996 50396.0, 168.00, 126.90, 30.012400, 30.0, -38.68, -6.69, $ 9-NOV-1996 50397.0, 164.90, 125.30, 30.014490, 30.0, -38.77, -6.46, $ 10-NOV-1996 50398.0, 161.70, 123.70, 30.016540, 30.0, -38.77, -6.44, $ 11-NOV-1996 50399.0, 158.50, 122.20, 30.018510, 30.0, -38.61, -6.65, $ 12-NOV-1996 50400.0, 155.30, 120.80, 30.020420, 30.0, -38.32, -6.92, $ 13-NOV-1996 50401.0, 152.10, 119.30, 30.022290, 30.0, -38.10, -7.05, $ 14-NOV-1996 50402.0, 148.80, 118.00, 30.024170, 30.0, -38.05, -6.93, $ 15-NOV-1996 50403.0, 145.50, 116.70, 30.026120, 30.0, -38.16, -6.67, $ 16-NOV-1996 50404.0, 142.20, 115.40, 30.028160, 30.0, -38.27, -6.42, $ 17-NOV-1996 50405.0, 138.90, 114.20, 30.030320, 30.0, -38.26, -6.25, $ 18-NOV-1996 50406.0, 135.60, 113.00, 30.032570, 30.0, -38.14, -6.13, $ 19-NOV-1996 50407.0, 132.20, 111.90, 30.034870, 30.0, -38.02, -6.02, $ 20-NOV-1996 50408.0, 128.90, 110.80, 30.037170, 30.0, -38.04, -5.95, $ 21-NOV-1996 50409.0, 125.50, 109.80, 30.039410, 30.0, -38.24, -5.99, $ 22-NOV-1996 50410.0, 122.10, 108.80, 30.041520, 30.0, -38.48, -6.10, $ 23-NOV-1996 50411.0, 118.70, 107.80, 30.043500, 30.0, -38.53, -6.20, $ 24-NOV-1996 50412.0, 115.20, 107.00, 30.045330, 30.0, -38.33, -6.22, $ 25-NOV-1996 50413.0, 111.80, 106.10, 30.047030, 30.0, -38.03, -6.16, $ 26-NOV-1996 50414.0, 108.30, 105.40, 30.048650, 30.0, -37.80, -6.09, $ 27-NOV-1996 50415.0, 104.90, 104.60, 30.050230, 30.0, -37.59, -6.08, $ 28-NOV-1996 50416.0, 101.40, 103.90, 30.051810, 30.0, -37.26, -6.15, $ 29-NOV-1996 50417.0, 97.90, 103.30, 30.053420, 30.0, -36.85, -6.22, $ 30-NOV-1996 50418.0, 94.40, 102.70, 30.055070, 30.0, -36.54, -6.21, $ 1-DEC-1996 50419.0, 90.90, 102.20, 30.056800, 30.0, -36.43, -6.14, $ 2-DEC-1996 50420.0, 87.40, 101.70, 30.058600, 30.0, -36.42, -6.05, $ 3-DEC-1996 50421.0, 83.90, 101.30, 30.060460, 30.0, -36.43, -5.95, $ 4-DEC-1996 50422.0, 80.40, 100.90, 30.062370, 30.0, -36.52, -5.88, $ 5-DEC-1996 50423.0, 76.90, 100.60, 30.064300, 30.0, -36.76, -5.78, $ 6-DEC-1996 50424.0, 73.40, 100.30, 30.066230, 30.0, -37.02, -5.63, $ 7-DEC-1996 50425.0, 69.80, 100.10, 30.068130, 30.0, -37.12, -5.47, $ 8-DEC-1996 50426.0, 66.30, 99.90, 30.069970, 30.0, -37.00, -5.43, $ 9-DEC-1996 50427.0, 62.80, 99.80, 30.071740, 30.0, -36.76, -5.63, $ 10-DEC-1996 50428.0, 59.20, 99.70, 30.073480, 30.0, -36.54, -5.96, $ 11-DEC-1996 50429.0, 55.70, 99.70, 30.075210, 30.0, -36.39, -6.13, $ 12-DEC-1996 50430.0, 52.10, 99.80, 30.076990, 30.0, -36.35, -5.96, $ 13-DEC-1996 50431.0, 48.60, 99.80, 30.078860, 30.0, -36.40, -5.55, $ 14-DEC-1996 50432.0, 45.10, 100.00, 30.080840, 30.0, -36.51, -5.17, $ 15-DEC-1996 50433.0, 41.50, 100.20, 30.082920, 30.0, -36.61, -4.99, $ 16-DEC-1996 50434.0, 38.00, 100.40, 30.085040, 30.0, -36.68, -4.97, $ 17-DEC-1996 50435.0, 34.50, 100.70, 30.087150, 30.0, -36.75, -5.03, $ 18-DEC-1996 50436.0, 31.00, 101.00, 30.089190, 30.0, -36.89, -5.15, $ 19-DEC-1996 50437.0, 27.50, 101.40, 30.091120, 30.0, -37.12, -5.31, $ 20-DEC-1996 50438.0, 24.00, 101.90, 30.092910, 30.0, -37.37, -5.44, $ 21-DEC-1996 50439.0, 20.50, 102.40, 30.094550, 30.0, -37.45, -5.48, $ 22-DEC-1996 50440.0, 17.00, 102.90, 30.096070, 30.0, -37.28, -5.46, $ 23-DEC-1996 50441.0, 13.50, 103.50, 30.097500, 30.0, -37.00, -5.42, $ 24-DEC-1996 50442.0, 10.00, 104.20, 30.098880, 30.0, -36.82, -5.38, $ 25-DEC-1996 50443.0, 6.60, 104.90, 30.100250, 30.0, -36.73, -5.37, $ 26-DEC-1996 50444.0, 3.10, 105.60, 30.101640, 30.0, -36.59, -5.40, $ 27-DEC-1996 50445.0, -0.30, 106.40, 30.103080, 30.0, -36.34, -5.42, $ 28-DEC-1996 50446.0, -3.70, 107.20, 30.104590, 30.0, -36.14, -5.43, $ 29-DEC-1996 50447.0, -7.20, 108.10, 30.106160, 30.0, -36.10, -5.41, $ 30-DEC-1996 50448.0, -10.50, 109.10, 30.107810, 30.0, -36.10, -5.38, $ 31-DEC-1996 50449.0, -13.90, 110.10, 30.109500, 30.0, -36.07, -5.36, $ 1-JAN-1997 50450.0, -17.30, 111.10, 30.111220, 30.0, -36.17, -5.37, $ 2-JAN-1997 50451.0, -20.60, 112.20, 30.112950, 30.0, -36.53, -5.44, $ 3-JAN-1997 50452.0, -24.00, 113.30, 30.114660, 30.0, -36.97, -5.49, $ 4-JAN-1997 50453.0, -27.30, 114.50, 30.116340, 30.0, -37.16, -5.42, $ 5-JAN-1997 50454.0, -30.60, 115.80, 30.117970, 30.0, -37.05, -5.30, $ 6-JAN-1997 50455.0, -33.90, 117.10, 30.119570, 30.0, -36.87, -5.32, $ 7-JAN-1997 50456.0, -37.10, 118.40, 30.121170, 30.0, -36.81, -5.54, $ 8-JAN-1997 50457.0, -40.30, 119.80, 30.122810, 30.0, -36.81, -5.74, $ 9-JAN-1997 50458.0, -43.60, 121.20, 30.124550, 30.0, -36.72, -5.64, $ 10-JAN-1997 50459.0, -46.70, 122.70, 30.126420, 30.0, -36.54, -5.28, $ 11-JAN-1997 50460.0, -49.90, 124.20, 30.128430, 30.0, -36.38, -4.92, $ 12-JAN-1997 50461.0, -53.10, 125.70, 30.130510, 30.0, -36.34, -4.76, $ 13-JAN-1997 50462.0, -56.20, 127.30, 30.132610, 30.0, -36.49, -4.75, $ 14-JAN-1997 50463.0, -59.30, 129.00, 30.134640, 30.0, -36.78, -4.83, $ 15-JAN-1997 $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Quasi-Stellar Radio sources: $ $ Since NEAR uses no VLBI data types, there is no list of quasars. $ QNUMBR(1) = 25*0, QNAME(1) = 25*' ', QRA(1) = 25*0.0D0, QDEC(1) = 25*0.0D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ ACCUME $ $ ACCUME accumulates all the partial derivatives from REGRES to form $ an information matrix consisting of state parameters & parameters $ specified in 'YPARAM' and 'RANDOM'. $ ACUPRT(1) = .TRUE., $ ACCUME print flags. ACUPRT(2) = .TRUE., ACUPRT(3) = 8*.FALSE., YPARAM(1) = 994*' ', $ Bias parameters (' ' = all parameters on regres) $ $ Note: YPARAM allows a parameter to be both random and bias. $ $ Instead of using a priori covariances, the ACCUME information array may $ be initialized from a previous ACCUME file: $ SCOLDR = 1.0D0, $ Input ACCUME file scale factor. $ $ Stochastic & sequential estimation inputs: $ COVARY = 100*0, $ Batch numbers to be smoothed. COVOPT = 0, $ Calculate smoothed covariance at batch 1. BCHTIM(1) = ' ', $ First batch will be at PV File epoch. BCHLEN(1) = ' ', $ ' ' => run in single batch mode. OUTBCH(1) = 1, $ List of batch #'s for which an information $ array should be output to ACCUME. $ RANDOM(1) = 20*' ', $ Specify the stochastic parameters. PSIGMA(1,1) = 2000*0.0D0, $ Sigmas of the stochastics. DAPW(1) = 20*0.0D0, $ Variances of the stochastics. MTAU(1) = 20*0.0D0, $ Correlation times in days. MTAUC(1) = 20*' ', NAP(1) = 100*0, NPSIG(1) = 100*0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ SOLVE $ $ SOLVE uses the information matrix to estimate parameters while $ considering the effects of other parameters, and generates an $ epoch state covariance. $ SVD = .FALSE., $ TRUE => SVD, Singular Value Decomposition. $ FALSE => SRIF, Square Root Information Filter. EPS2 = 1.0D-30, $ Tolerance for Singular Value Decomposition. SALENT = .TRUE., $ Write salient information file (90). SMOFIL = .FALSE., $ No SMOOTH files are written. SMOSOL = 0, $ SOLUTN(1) = 25*0, $ 0's => "SOLVE" uses the last batch from accume $ to determine a solution. BATCH = 0, $ Initialize batch, solution & iteration numbers. SOLNO = 0, ITNO = 0, $ EST( 1) = 200*' ', CON( 1) = 200*' ', $ EST( 1) = 'X','Y','Z','DX','DY','DZ', $ APVNOM( 1) = 200*.TRUE., $ The a priori values for the EST parameters $ are not from the arrays APVALS or APVALi. $ APVALS( 1) = 200*0.0D0, $ A priori values of the parameters in APNAMS. APVAL1( 1) = 50*0.0D0, $ '' APNAM1. APVAL2( 1) = 50*0.0D0, $ '' APNAM2. APVAL3( 1) = 50*0.0D0, $ '' APNAM3. APVAL4( 1) = 50*0.0D0, $ '' APNAM4. APVAL5( 1) = 50*0.0D0, $ '' APNAM5. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ a-priori covariances: $ $ Names of the parameters for which apriori covariances exist. $ These names correspond to values in the APQ arrays. $ APNAMS( 1) = 200*' ', APNAM1( 1) = 50*' ', APNAM2( 1) = 50*' ', APNAM3( 1) = 50*' ', APNAM4( 1) = 50*' ', APNAM5( 1) = 50*' ', $ $ Initialize the apriori covariances, APQ. $ APQCOV = .TRUE., $ APQ contains apriori covariances. $ APQ(1,1) = 40000*0.0D0, APQ1(1,1) = 2500*0.0D0, APQ2(1,1) = 2500*0.0D0, APQ3(1,1) = 2500*0.0D0, APQ4(1,1) = 2500*0.0D0, APQ5(1,1) = 2500*0.0D0, $ SCAPQ(1) = 200*1.0D0, $ APQ array scale factors. SCAPQ1(1) = 50*1.0D0, SCAPQ2(1) = 50*1.0D0, SCAPQ3(1) = 50*1.0D0, SCAPQ4(1) = 50*1.0D0, SCAPQ5(1) = 50*1.0D0, $ $ Parameter names corresponding DIAGQ or APQ values: $ APNAMS( 1) = 'X','Y','Z','DX','DY','DZ', $ APNAM1( 1) = 'SPEC01','DIFF01','AREA01', 'SPEC02','DIFF02','AREA02', APNAM1( 7) = 'DIFF03','AREA03', 'DIFF04','AREA04', 'DIFF05','AREA05', APNAM1(13) = 'NUF','NUB', $ APNAM2( 1) = 'GM3','GMM','GM9','J302','J402', APNAM2( 6) = 'ATAR','ATAX','ATAY', 'BTAR','BTAX','BTAY', 'CTAR','CTAX','CTAY', APNAM2(15) = 'DRB04','STB04','F004','ALP004','DLT004', 'DRB05','STB05','F005','ALP005','DLT005', 'DRB06','STB06','F006','ALP006','DLT006', 'DRB07','STB07','F007','ALP007','DLT007', 'DRB08','STB08','F008','ALP008','DLT008', $ APNAM3( 1) = 'TROPD1','TROPW1','IONOD1','IONON1', 'TROPD4','TROPW4','IONOD4','IONON4', 'TROPD6','TROPW6','IONOD6','IONON6', APNAM3(13) = 'RC01','RC02','RC03', $ $ APNAM4 parameter names are included with the station location covariance. $ $ APNAM5 parameter names are included with the ephemeris covariance. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ a-priori sigmas squared: $ DIAGQ( 1) = $ State uncertainties: 1.0D16, 1.0D16, 1.0D16, $ position (km) 1.0D16, 1.0D16, 1.0D16, $ velocity (km/s) $ DIAGQ1( 1) = $ SRP uncertainties: 4.0000D-4, 0.0289D-4, 0.0025D0, 4.0000D-4, 0.0289D-4, 0.0025D0, DIAGQ1( 7) = 8.5849D-4, 0.0025D0, 8.5849D-4, 0.0025D0, 8.5849D-4, 0.0100D0, DIAGQ1(13) = 8.5849D-4, 8.5849D-4, $ DIAGQ2( 1) = $ Gravity uncertainties: 2.500000D-3, $ Earth GM 1.476225D-6, $ Moon GM 0.00039204, $ MATHILDE GM (.0198^2 = 100%) 1.000000D-16, $ Earth J2 0.181162896275495D-15, $ Mars J2 (MARS50C) DIAGQ2( 6) = $ Non-gravity uncertainties: 1.0D-24, 1.0D-24, 1.0D-24, $ constant (km/s2) 1.0D-26, 1.0D-26, 1.0D-26, $ linear (km/s3) 1.0D-28, 1.0D-28, 1.0D-28, $ quadratic (km/s4) DIAGQ2(15) = $ Maneuver uncertainties: 6.2500D0, $ start (s) 3.6000D3, $ duration (s) 3.6169D-4, $ thrust (N) 1.7424D0, $ RA degrees 1.7424D0, $ DEC degrees DIAGQ2(20) = 6.2500D0, 3.6000D3, 3.6169D-4, 1.7424D0, 1.7424D0, 6.2500D0, 3.6000D3, 3.6169D-4, 1.7424D0, 1.7424D0, 6.2500D0, 3.6000D3, 3.6169D-4, 1.7424D0, 1.7424D0, $ DIAGQ3( 1) = $ Media uncertainties: 0.0001D0, 0.0016D0, $ dry & wet troposphere 0.5625D0, 0.0225D0, $ day & night ionosphere 0.0001D0, 0.0016D0, 0.5625D0, 0.0225D0, 0.0001D0, 0.0016D0, 0.5625D0, 0.0225D0, DIAGQ3(13) = 2.25D2, 2.25D2, 2.25D2, $ SRA biases (15 meters). $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ This station location covariance constructed 22-May-1992, by W. Folkner $ $ The basis of the covariance is from the VLBI MODEST fit resulting in $ catalog JPL 1991-1, documented in: $ J. A. Steppe, S. H. Oliveau, and O. J. Sovers, "Earth Rotation Parameters $ from DSN VLBI: 1991", IERS Technical Note 8, pp. 47-60, $ Observatoire de Paris, 1991. $ $ This covariance was scaled by 2 in sigma to give realistic stn-to-stn $ uncertainties. A geocenter uncertainty of 10 cm was added to reflect the $ degree to which LLR and SLR agree on the geocenter. Since MO will not have $ an updated nutation model, this covariance includes 40 nrad in x and y $ rotation uncertainties to crudely account for nutation mismodeling. $ A 10 nrad uncertainty is included in z to account for the terrestial $ orientation uncertainty with respect to the UT1-UTC series. $ $ APNAM4( 1) = 'CU12', 'LO12', 'CV12', 'CU13', 'LO13', 'CV13', 'CU14', 'LO14', 'CV14', 'CU15', 'LO15', 'CV15', 'CU42', 'LO42', 'CV42', 'CU43', 'LO43', 'CV43', 'CU45', 'LO45', 'CV45', 'CU61', 'LO61', 'CV61', 'CU63', 'LO63', 'CV63', 'CU65', 'LO65', 'CV65', 'CU46', 'LO46', 'CV46', $ APQ4( 1, 1) = 3.210664334817D-08, APQ4( 1, 2) = 1.947002893161D-12, 4.215295943593D-12, APQ4( 1, 3) = -3.052550170932D-08, -1.449413449470D-12, 5.434102410208D-08, APQ4( 1, 4) = 3.187185390191D-08, 1.668575128931D-12, -3.051657880970D-08, 3.214252875195D-08, APQ4( 1, 5) = 1.562797387374D-12, 4.182075102314D-12, -1.848359676463D-12, 1.528244992196D-12, 4.208669550752D-12, APQ4( 1, 6) = -3.057966126655D-08, -1.986623945914D-12, 5.413560973475D-08, -3.048785719600D-08, -1.164039655575D-12, 5.441559437656D-08, APQ4( 1, 7) = 3.194626473563D-08, 9.396255482849D-13, -3.062716456337D-08, 3.193250770841D-08, 8.684314352999D-13, -3.064334920334D-08, 3.203512985155D-08, APQ4( 1, 8) = 1.984924545439D-12, 4.196269036636D-12, -2.034592713571D-12, 2.018445459063D-12, 4.191237296219D-12, -2.047449275073D-12, 1.413659757755D-12, 4.211730421917D-12, APQ4( 1, 9) = -3.048698906656D-08, -1.045608352320D-12, 5.398007044388D-08, -3.044276173109D-08, -9.262370397434D-13, 5.401477903464D-08, -3.057375459566D-08, -1.464805328087D-12, 5.392243513497D-08, APQ4( 1,10) = 3.193953107138D-08, 9.444735482638D-13, -3.062890421446D-08, 3.191576474351D-08, 9.179398430803D-13, -3.064607127603D-08, 3.201194512907D-08, 1.488699284284D-12, -3.057772012819D-08, 3.219069206936D-08, APQ4( 1,11) = 1.900243132744D-12, 4.194848533125D-12, -2.144118446711D-12, 1.976131758113D-12, 4.189090420954D-12, -2.186454380877D-12, 1.401112204145D-12, 4.209163806475D-12, -1.625385250817D-12, 2.109474393898D-12, 4.240354286698D-12, APQ4( 1,12) = -3.049481566696D-08, -1.142806377323D-12, 5.396962615331D-08, -3.045220621072D-08, -1.058786833980D-12, 5.400133917982D-08, -3.058394361376D-08, -1.619296335541D-12, 5.390664223184D-08, -3.061109325709D-08, -2.224315901906D-12, 5.420281537702D-08, APQ4( 1,13) = 6.732341405282D-10, 1.275935269285D-10, -2.265085296173D-09, 6.759742117838D-10, 1.271680316620D-10, -2.272807978514D-09, 6.678173546647D-10, 1.285041087717D-10, -2.215668129623D-09, 6.697738181253D-10, 1.283813765368D-10, -2.228841370556D-09, 3.323119251012D-08, APQ4( 1,14) = -1.281148947539D-10, 4.235760377255D-13, 3.370284990126D-10, -1.278290193833D-10, 4.227773518904D-13, 3.371913812146D-10, -1.288766171048D-10, 4.213273059817D-13, 3.364742209748D-10, -1.288150634086D-10, 4.224169309175D-13, 3.365630810030D-10, 3.988564185437D-12, 4.273174329725D-12, APQ4( 1,15) = 2.385812840910D-09, 3.348831245078D-10, 6.719613798184D-09, 2.387029886172D-09, 3.342294346284D-10, 6.707944027828D-09, 2.344209200387D-09, 3.364689199683D-10, 6.784568411655D-09, 2.343740743277D-09, 3.365344166156D-10, 6.794397322853D-09, 3.025491831290D-08, -2.773034737522D-12, 5.438631670604D-08, APQ4( 1,16) = 6.720316727361D-10, 1.276154904233D-10, -2.263914097998D-09, 6.749676321819D-10, 1.271930442463D-10, -2.271383775985D-09, 6.669740374672D-10, 1.285308857235D-10, -2.213987354536D-09, 6.680059590153D-10, 1.283959204130D-10, -2.228638469759D-09, 3.285425249621D-08, 3.959788847181D-12, 3.024324552002D-08, 3.286271926425D-08, APQ4( 1,17) = -1.281873727781D-10, 4.233252392083D-13, 3.370035319409D-10, -1.279061796244D-10, 4.224869567237D-13, 3.371620324030D-10, -1.289558056044D-10, 4.210166087468D-13, 3.364418071519D-10, -1.288835647872D-10, 4.222373852334D-13, 3.365465323285D-10, 3.988349151029D-12, 4.227479260551D-12, -2.705397824064D-12, 4.012411105254D-12, 4.228440395450D-12, APQ4( 1,18) = 2.384624329945D-09, 3.348563977026D-10, 6.716667521552D-09, 2.385477624490D-09, 3.341983549192D-10, 6.704593529584D-09, 2.342430282914D-09, 3.364354563824D-10, 6.780865224465D-09, 2.343229726816D-09, 3.365173177366D-10, 6.792669744523D-09, 3.024145102811D-08, -2.683670177780D-12, 5.400805829529D-08, 3.023791296076D-08, -2.697399825897D-12, 5.401118555718D-08, APQ4( 1,19) = 6.744896166757D-10, 1.275671752836D-10, -2.268760362654D-09, 6.762309313130D-10, 1.271283040352D-10, -2.277956278678D-09, 6.673117522400D-10, 1.284539367031D-10, -2.221989153732D-09, 6.543495195925D-10, 1.281303846496D-10, -2.259104960766D-09, 3.283846474323D-08, 3.902770353456D-12, 3.024927456534D-08, 3.284566078305D-08, 3.967704437129D-12, 3.024558966382D-08, 3.317455935356D-08, APQ4( 1,20) = -1.281088844508D-10, 4.237568321319D-13, 3.370152409652D-10, -1.278128304279D-10, 4.230874448990D-13, 3.371929122426D-10, -1.288522991891D-10, 4.217408600853D-13, 3.364874970526D-10, -1.286377691589D-10, 4.248593607141D-13, 3.368187127326D-10, 4.031041512161D-12, 4.226497260267D-12, -2.716982768130D-12, 4.066732380174D-12, 4.227304699714D-12, -2.725673430240D-12, 4.473426170051D-12, 4.268532630974D-12, APQ4( 1,21) = 2.387883775761D-09, 3.349182250481D-10, 6.720494681270D-09, 2.390539647900D-09, 3.342878462715D-10, 6.710629212108D-09, 2.348441077909D-09, 3.365396876630D-10, 6.788973412239D-09, 2.368722473894D-09, 3.368783621729D-10, 6.831265214637D-09, 3.025342082904D-08, -2.723119400720D-12, 5.400139919545D-08, 3.025149869321D-08, -2.753403576300D-12, 5.400239623718D-08, 3.029081405748D-08, -3.089327953119D-12, 5.430637999653D-08, APQ4( 1,22) = -1.340784794038D-08, 3.465234567064D-10, 1.326735640081D-08, -1.338580067188D-08, 3.459084521707D-10, 1.326507234208D-08, -1.347340346794D-08, 3.474677322174D-10, 1.328760649340D-08, -1.347339960209D-08, 3.475344450154D-10, 1.328983532693D-08, 1.318066352989D-08, 7.338209856520D-11, 3.022666673959D-08, 1.318640577562D-08, 7.346736589743D-11, 3.022480022146D-08, 1.317719622796D-08, 7.342327423102D-11, 3.022581948386D-08, 3.814520517768D-08, APQ4( 1,23) = -3.700297336464D-10, -1.349759762997D-12, 3.710382916297D-10, -3.696833605019D-10, -1.346269137479D-12, 3.713229284823D-10, -3.705714783797D-10, -1.362221013841D-12, 3.702387062849D-10, -3.706224214424D-10, -1.361165490946D-12, 3.703164331509D-10, -7.962358302166D-11, 1.934647201505D-12, -1.783454861132D-10, -7.968038970454D-11, 1.934202933046D-12, -1.783189339097D-10, -7.959171539709D-11, 1.933826933206D-12, -1.784130267620D-10, -5.985540100345D-12, 5.619371847955D-12, APQ4( 1,24) = 1.077974135302D-08, -2.871249012170D-10, -5.658079860762D-09, 1.076279231351D-08, -2.866696035956D-10, -5.665306946523D-09, 1.085825280011D-08, -2.883914653513D-10, -5.692531100869D-09, 1.085816778531D-08, -2.883461615952D-10, -5.695519103159D-09, -2.471581213785D-08, -1.383022416755D-10, -2.655457342052D-08, -2.470957459474D-08, -1.382174662711D-10, -2.655692016125D-08, -2.471811919547D-08, -1.382323272263D-10, -2.655111381789D-08, -3.151645779469D-08, -3.883649255625D-12, 4.962833099962D-08, APQ4( 1,25) = -1.341055730756D-08, 3.465185652913D-10, 1.326746824626D-08, -1.338570133477D-08, 3.458818215780D-10, 1.326482214724D-08, -1.347139009502D-08, 3.474282806693D-10, 1.328726269220D-08, -1.347729267780D-08, 3.475400963739D-10, 1.329014473790D-08, 1.318496883369D-08, 7.343481476777D-11, 3.022755530264D-08, 1.319032990418D-08, 7.351439633967D-11, 3.022581401836D-08, 1.318114330879D-08, 7.346915178921D-11, 3.022684879112D-08, 3.780695257955D-08, -5.611245962950D-12, -3.150980292040D-08, 3.781666408736D-08, APQ4( 1,26) = -3.700225786005D-10, -1.349990936696D-12, 3.710784948198D-10, -3.696515204053D-10, -1.346673689586D-12, 3.713612978648D-10, -3.705238566173D-10, -1.362730932633D-12, 3.702764088386D-10, -3.706253474809D-10, -1.361314255457D-12, 3.703578952632D-10, -7.969649278525D-11, 1.934440707683D-12, -1.783301696665D-10, -7.974806475704D-11, 1.934088924803D-12, -1.783047746484D-10, -7.965836957132D-11, 1.933720976751D-12, -1.783991370062D-10, -5.644572144636D-12, 5.569114132227D-12, -3.918944677143D-12, -5.623554261985D-12, 5.570204699529D-12, APQ4( 1,27) = 1.077675518344D-08, -2.871198585508D-10, -5.659725833674D-09, 1.075988201283D-08, -2.866663237137D-10, -5.667052985732D-09, 1.085546196756D-08, -2.883890812116D-10, -5.694293788480D-09, 1.085512515595D-08, -2.883401753325D-10, -5.697129893650D-09, -2.470861939991D-08, -1.382486679350D-10, -2.655587700257D-08, -2.470297365172D-08, -1.381736996617D-10, -2.655806708789D-08, -2.471157302961D-08, -1.381898235967D-10, -2.655223269414D-08, -3.150654893673D-08, -3.918501783996D-12, 4.924316260825D-08, -3.150337242572D-08, -3.965061441040D-12, 4.924861018332D-08, APQ4( 1,28) = -1.340125325993D-08, 3.465712598799D-10, 1.327190939446D-08, -1.338323606087D-08, 3.459903494491D-10, 1.327025068334D-08, -1.347359875639D-08, 3.475687653712D-10, 1.329300720935D-08, -1.354449435396D-08, 3.481896777115D-10, 1.330269496340D-08, 1.318313782457D-08, 7.331879329771D-11, 3.022145498826D-08, 1.318845243736D-08, 7.339609616124D-11, 3.021966760732D-08, 1.318035983666D-08, 7.333456802841D-11, 3.021920619001D-08, 3.779228031304D-08, -5.654533270412D-12, -3.151416491196D-08, 3.779657716381D-08, -5.709725316081D-12, -3.150819940896D-08, 3.801840578070D-08, APQ4( 1,29) = -3.700099085394D-10, -1.349207732455D-12, 3.710562336941D-10, -3.696988433202D-10, -1.345435620646D-12, 3.713452869666D-10, -3.706093763732D-10, -1.361228957685D-12, 3.702624006103D-10, -3.712413520854D-10, -1.355646734431D-12, 3.704008088793D-10, -7.956012416726D-11, 1.934326440579D-12, -1.783733862850D-10, -7.961040312254D-11, 1.933991610587D-12, -1.783485024223D-10, -7.951190541242D-11, 1.933554161848D-12, -1.784563334653D-10, -5.609325604385D-12, 5.567448152154D-12, -3.858875132454D-12, -5.631444621896D-12, 5.568164524164D-12, -3.906494884073D-12, -6.878416771151D-12, 5.609617138041D-12, APQ4( 1,30) = 1.078220391357D-08, -2.871313759887D-10, -5.655411179855D-09, 1.076505610736D-08, -2.866735440975D-10, -5.662543087189D-09, 1.086038041266D-08, -2.883944791742D-10, -5.689804759748D-09, 1.085566237906D-08, -2.883131195212D-10, -5.692352663288D-09, -2.472193897931D-08, -1.383260015469D-10, -2.655346230994D-08, -2.471641060429D-08, -1.382533785607D-10, -2.655563706975D-08, -2.472520323494D-08, -1.382722744978D-10, -2.654995445862D-08, -3.151869577536D-08, -3.814007588856D-12, 4.923187753866D-08, -3.151592574696D-08, -3.861786896669D-12, 4.923715506004D-08, -3.152730052144D-08, -3.918038947669D-12, 4.960834793525D-08, APQ4(31,31) = 3.317455935356D-08, APQ4(32,32) = 4.268532630974D-12, APQ4(33,33) = 5.430637999653D-08, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Earth/Moon Barycenter - Mars planetary ephemeris covariance consistent $ with DE403. $ $ 1) Mail message from Myles Standish dated October 13, 1995. $ $ 2) Standish, E. M., et. al., "JPL Planetary and Lunar Ephemerides, $ DE403/LE403", JPL IOM 314.10-127, May 22, 1995. $ $ 3) Standish, E. M., "Updated Covariance of Mars for DE234", $ JPL IOM 314.6-1452, September 4, 1992. $ $ The DE403 ephemeris is now based upon the (J2000) reference frame of the $ International Earth Rotation Service (IERS). $ $ Also, the modeling of the perturbations of asteroids upon the planetary $ orbits has been improved. $ $ Heliocentric position errors on 11-SEP-1997 in VIEW1 coordinates: $ $ Mars Earth-Moon $ $ radial 0.09280 km 0.00823 km $ down track 3.50069 km 2.35441 km $ cross track 4.46716 km 2.41721 km $ $ Note: this covariance is *NOT* the formal covariance originally generated $ by Myles Standish in his ephemeris solution. It has been increased by $ multiplying the formal sigmas by a factor of 3 (9x each covariance term). $ This was done by Myles Standish himself in order to get a "realistic" $ 1-sigma covariance for the MGS NAV Team. $ APNAM5( 1) = 'DMWB','DPB','DQB','EDWB','DAB','DEB', 'DMW4','DP4','DQ4','EDW4','DA4','DE4', $ SCAPQ5( 1) = 12*1.0D0, $ Scale the formal covariance by 1. $ APQ5( 1, 1) = .2500619938607D-15, APQ5( 1, 2) = -.9840809907449D-16, .3012307203757D-15, APQ5( 1, 3) = -.6717466164725D-17, .7541612869500D-16, .3776553127620D-15, APQ5( 1, 4) = .4089233839056D-17, -.1642413344515D-17, -.1079032697502D-18, .6878386165598D-19, APQ5( 1, 5) = .4475725810474D-19, .3040308552871D-21, .7921580263731D-22, .2683325412564D-21, .2466195745570D-21, APQ5( 1, 6) = -.2772804565985D-19, .4122777712057D-20, .6754188665159D-20, -.4141840900251D-21, -.1449504322526D-21, .6449830592977D-21, APQ5( 1, 7) = .2526547011753D-15, -.1076259494468D-15, -.1604861006810D-16, .4129793504983D-17, .4471060435654D-19, -.2814441686566D-19, .2557662095781D-15, APQ5( 1, 8) = .5654626665896D-16, -.2374921888668D-15, -.3473195832252D-15, .9331081197412D-18, -.1114333165221D-20, .1201897480483D-20, .6945489596664D-16, .4189305687099D-15, APQ5( 1, 9) = -.7368457704872D-16, .1954231952373D-15, -.1655423108357D-15, -.1215023446591D-17, -.4720420756395D-20, .1934550630169D-20, -.7557637611684D-16, .1791365336996D-16, .2555002296624D-15, APQ5( 1,10) = .2350198519801D-16, -.1003311983381D-16, -.1485599691033D-17, .3856764479765D-18, .3866037364955D-20, -.2696388560863D-20, .2377747506121D-16, .6453894706049D-17, -.7024295975793D-17, .2216646550056D-17, APQ5( 1,11) = .7668707454546D-19, -.5831042764528D-21, -.2861548290076D-20, .5559161086068D-21, .4176215548227D-21, -.3369654932988D-21, .8038241575961D-19, .1174626010700D-20, -.8692160071761D-20, .6699776083859D-20, .1062979420069D-20, APQ5( 1,12) = .1242932383509D-18, .2731396047934D-19, .4283939404765D-20, .8141006826895D-21, .1000976210837D-20, -.8798008951018D-21, .1105354074578D-18, -.1884309554330D-19, .4043864619091D-19, .1314747563459D-19, .1867091352772D-20, .1277903318814D-19, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ Extra print from SOLVE: SOLPRP( 1) = 20*0, $ 0=OFF, 1=SINGLE PRECISION, 2=DOUBLE PRECISION $ SOLPRP( 1) = 1, $ Information with a priori. $ SOLPRP( 2) = 1, $ A priori (APQ). $ SOLPRP( 4) = 2, $ Computed covariance (4 digits). $ SOLPRP( 5) = 1, $ Correlation matrix. SOLPRP( 6) = 1, $ Print 132 column SOLVE page. $ SOLPRP( 7) = 1, $ Sensitivity matrix. $ SOLPRP( 8) = 2, $ Perturbation matrix (4 digits). $ SOLPRP( 9) = 2, $ Consider covariance (4 digits). $ SOLPRP(10) = 1, $ Singular value analysis. $ 3, & 11-20 are not used. $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ TRANSLATE and EDIT $ $ "TRANSLATE" connects a name to a data type & translates the CSP commands. $ $ "EDIT" actually executes the "TRANSLATE" instructions. $ EDFLAG = .TRUE., $ TRUE ==> Data editing is on in REGRES. $ DANAMS( 1) = 100*' ', DANUMS( 1) = 100*0, $ DANAMS( 1) = 'ALL', DANUMS( 1) = 0, DANAMS( 2) = 'INS', DANUMS( 2) = 1, DANAMS( 3) = 'INQ', DANUMS( 3) = 3, DANAMS( 4) = 'IWS', DANUMS( 4) = 5, DANAMS( 5) = 'IWQ', DANUMS( 5) = 6, DANAMS( 6) = 'DDOD', DANUMS( 6) = 7, DANAMS( 7) = 'DDOR', DANUMS( 7) = 8, DANAMS( 8) = 'VLBI', DANUMS( 8) = 070008, DANAMS( 9) = 'DOPPLER', DANUMS( 9) = 110016, DANAMS(10) = 'F1', DANUMS(10) = 11, DANAMS(11) = 'F2', DANUMS(11) = 12, DANAMS(12) = 'F3', DANUMS(12) = 13, DANAMS(13) = 'F3C', DANUMS(13) = 14, DANAMS(14) = 'DF2', DANUMS(14) = 15, DANAMS(15) = 'F2MF3', DANUMS(15) = 16, DANAMS(16) = 'RANGE', DANUMS(16) = 310048, DANAMS(17) = 'ETR', DANUMS(17) = 31, DANAMS(18) = 'MARK1', DANUMS(18) = 32, DANAMS(19) = 'MARK1A', DANUMS(19) = 33, DANAMS(20) = 'TAU', DANUMS(20) = 34, DANAMS(21) = 'MU', DANUMS(21) = 35, DANAMS(22) = 'PLOP', DANUMS(22) = 36, DANAMS(23) = 'SRA', DANUMS(23) = 37, DANAMS(24) = 'MU2', DANUMS(24) = 38, DANAMS(25) = 'GSTDN', DANUMS(25) = 41, DANAMS(26) = 'DOPRNG', DANUMS(26) = 110048, DANAMS(27) = 'ANGLES', DANUMS(27) = 510058, DANAMS(28) = 'AZ', DANUMS(28) = 51, DANAMS(29) = 'EL', DANUMS(29) = 52, DANAMS(30) = 'HA', DANUMS(30) = 53, DANAMS(31) = 'DEC', DANUMS(31) = 54, DANAMS(32) = 'X30', DANUMS(32) = 55, DANAMS(33) = 'Y30', DANUMS(33) = 56, DANAMS(34) = 'X85', DANUMS(34) = 57, DANAMS(35) = 'Y85', DANUMS(35) = 58, DANAMS(36) = 'PLANPX', DANUMS(36) = 61, DANAMS(37) = 'PLANLN', DANUMS(37) = 62, DANAMS(38) = 'STARPX', DANUMS(38) = 145, DANAMS(39) = 'STARLN', DANUMS(39) = 146, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ MAPPING $ $ Input for the programs MAPGEN and MAPSEM. $ MAPGEN transforms from EME2000 to other coordinate systems. It creates $ the state vectors and mapping matrices. $ MAPSEM prints the mapped output. $ EQEPOC(1) = 99*0.0D0, $ Epoch for reference planes. DMAP(1) = 99*0.0, $ D.P. version of MAPIN(1,J) MAPIN(1,1) = 1188*' ', MAPSAT(1,1) = 792*' ', MAPSEN(1) = 99*0, $ Matrix print (0=OFF, 1=SENS, 2=PERT, 3=BOTH) $ MAPBUG( 1) = 30*0, $ MAPGEN & MAPSEM debug, covariance & planet $ mapping flags. MAPBUG(18) = 1, $ Mapped covariance print (1=OFF, 0=ON) MAPBUG(20) = 2, $ Planetary mapping is to VIEW1. $ MAPRP(1) = 0, $ Mapping matrix print (0=OFF, 1=ON) MAPRP(2) = 0, $ Mapped covariance print (0=OFF,1=S.P.,2=D.P.) MAPAP = 0, $ Mapped statistics: $ (0=FILTERED, 1=APRIORI, 2=SMOOTHED) $ CTOLR = 1.0D-5, CITLIM = 5, $ Parameters for closest approach determination $ $ EXAMPLE: $ $ B-Plane: Earth Mean Equator of Date $ $ MAPIN( 1,1) = ' ', $ Epoch to map. $ MAPIN( 2,1) = 'ET', $ Time scale. $ MAPIN( 3,1) = 'EQUATO', $ Name of the mapped to coordinate frame. $ MAPIN( 4,1) = 'EARTH', $ Body for the reference frame definition. $ MAPIN( 5,1) = 'SPACE', $ The reference plane X-axis orientation. $ MAPIN( 6,1) = 'EARTH', $ The body of the covariance center. $ MAPIN( 7,1) = 'MEAN', $ Reference plane definition. $ MAPIN( 8,1) = 'ASYMPT', $ Coordinate system $ MAPIN( 9,1) = 'EARTH', $ Target body of the event requested. $ MAPIN(10,1) = 'CLOSAP', $ Map to an event. $ MAPIN(11,1) = '01-MAY-1998 00:00:00', $ $ EME2000 Cartesian $ MAPIN(1,1)= ' ', MAPIN(2,1)= 'UTC', MAPIN(3,1)= 'EQUATO','EARTH','SPACE','PLUTO','MEAN','CARTES', 'PLUTO','CLOSAP','27-JUN-1997 00:00:00.0000','UTC', EQEPOC(1) = 2000.D0, $ $ VME2000 Cartesian $ MAPIN(1,2)= ' ', MAPIN(2,2)= 'UTC', MAPIN(3,2)= 'EQUATO','PLUTO','SPACE','PLUTO','MEAN','CARTES', 'PLUTO','CLOSAP','27-JUN-1997 00:00:00.0000','UTC', EQEPOC(2) = 2000.D0, $ $ View frame 1 $ MAPIN(1,3)= ' ', MAPIN(2,3)= 'UTC', MAPIN(3,3)= 'VIEW1',' ',' ','PLUTO',' ','CARTES', 'PLUTO','CLOSAP','27-JUN-1997 00:00:00.0000','UTC', EQEPOC(3) = 2000.D0, $ $ VME2000 classical $ MAPIN(1,4)= ' ', MAPIN(2,4)= 'UTC', MAPIN(3,4)= 'EQUATO','PLUTO','SPACE','PLUTO','MEAN','CLASSI', 'PLUTO','CLOSAP','27-JUN-1997 00:00:00.0000','UTC', EQEPOC(4) = 2000.D0, $ $ Plane-of-sky classical $ MAPIN(1,5)= ' ', MAPIN(2,5)= 'UTC', MAPIN(3,5)= 'SKYPLN','SCRAFT',' ','PLUTO',' ','CLASSI', 'PLUTO','CLOSAP','27-JUN-1997 00:00:00.0000','UTC', EQEPOC(5) = 2000.D0, $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ OUTPUT $ $ OUTPUT displays data residuals on a printed output. The program also $ generates plots and plotfiles of the data residuals. $ RSTA( 1) = 15*' ', RSTA( 1) = 'RESID','CRESID', $ Additional parameters on file. $ IPFLAG(1) = 4*0, $ $ The units of the data types in the ODP are as follows: $ $ F1, F2, F3, F2MF3: Hertz, for Doppler data types. $ SRA: Range Units, for range data. $ IWS, IWQ, DDOR: nanoseconds, for wide-band VLBI types. $ INS, INQ, DDOD: Hertz, for narrow-band VLBI types. $ X85, Y85: degrees, for angle data types. $ $ 1.0 mm/s = 0.02810 Hz for F1 and F2MF3, X-band. $ 1.0 mm/s = 0.05620 Hz for F2 and F3, X-band. $ 1.0 m = 7.01030 RU for SRA. $ 1.0 m = 3.33564 nanoseconds for IWS, IWQ, and DDOR. $ = 141.333 nanoradians. $ 1.0 mm/s = 0.02810 Hz for INS, INQ, and DDOD, X-band. $ PLDTYP( 1) = 'F1', PLTBND( 1) = 'X', PLSCAL( 1) = 1.4050, PLDTYP( 2) = 'F2', PLTBND( 2) = 'X', PLSCAL( 2) = 2.8100, PLDTYP( 3) = 'F3', PLTBND( 3) = 'X', PLSCAL( 3) = 2.8100, PLDTYP( 4) = 'F2MF3', PLTBND( 4) = 'X', PLSCAL( 4) = 1.4050, PLDTYP( 5) = 'SRA', PLTBND( 5) = 'X', PLSCAL( 5) = 35052.0, PLDTYP( 6) = 'IWS', PLTBND( 6) = 'X', PLSCAL( 6) = 50.00, PLDTYP( 7) = 'IWQ', PLTBND( 7) = 'X', PLSCAL( 7) = 50.00, PLDTYP( 8) = 'DDOR', PLTBND( 8) = 'X', PLSCAL( 8) = 50.00, PLDTYP( 9) = 'INS', PLTBND( 9) = 'X', PLSCAL( 9) = 1.4050, PLDTYP(10) = 'INQ', PLTBND(10) = 'X', PLSCAL(10) = 1.4050, PLDTYP(11) = 'DDOD', PLTBND(11) = 'X', PLSCAL(11) = 1.4050, PLDTYP(12) = 'X85', PLTBND(12) = ' ', PLSCAL(12) = 1.00, PLDTYP(13) = 'Y85', PLTBND(13) = ' ', PLSCAL(13) = 1.00, $ OUTBEG = '17-FEB-1996 00:00:00', $ Launch date. OUTEND = '01-JUL-2000 00:00:00', $ End-of-mission? $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $ TABWET and TABDRY from C. C. Chao 8/29/77. $ $ The elevation angle (in degrees) corresponding to each TAB value lies $ above it in the table. $ $ 1) Mottinger, N. A., "Reflections on Refraction -- A Historical Overview $ of the Tropospheric Refraction Model in the ODP," JPL IOM 314.10-385, $ January 18, 1984. $ $ 2) Chao, C. C., "Improved Tropospheric Mapping Tables Including Bending $ Effect for SATODP," JPL IOM 391.3-637, December 28, 1972. $ $ 3) Chao, C. C., "Improved Estimation of the Parameters and Mapping Tables $ of Tropospheric Calibration for MM71," JPL IOM 391.3-352, May 25, 1971. $ TABWET(1) = 261*0.0D0, $ TABWET(1) = $ .00 61.5790, $ .10 .20 .30 .40 .50 .60 .70 .80 .90 , 57.8413,54.3927,51.2432,48.3625,45.7235,43.3021,41.0769,39.0284,37.1397, $ 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 , 35.3955,33.7820,32.2870,30.8996,29.6100,28.4095,27.2901,26.2449,25.2675, $ 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 , 24.3521,23.4935,22.6873,21.9291,21.2152,20.5420,19.9066,19.3060,18.7377, $ 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 , 18.1994,17.6889,17.2042,16.7435,16.3053,15.8880,15.4903,15.1108,14.7484, $ 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 , 14.4021,14.0709,13.7538,13.4500,13.1587,12.8792,12.6109,12.3530,12.1051, $ 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 , 11.8666,11.6369,11.4157,11.2024,10.9967,10.7982,10.6065,10.4213,10.2423, $ 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 , 10.0692, 9.9017, 9.7395, 9.5824, 9.4302, 9.2827, 9.1396, 9.0008, 8.8660, $ 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 , 8.7352, 8.6081, 8.4845, 8.3645, 8.2477, 8.1341, 8.0235, 7.9159, 7.8111, $ 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 , 7.7090, 7.6094, 7.5125, 7.4179, 7.3256, 7.2356, 7.1478, 7.0621, 6.9784, $ 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00 , 6.8966, 6.8167, 6.7387, 6.6624, 6.5878, 6.5148, 6.4435, 6.3737, 6.3054, $ 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90 , 6.2385, 6.1730, 6.1089, 6.0462, 5.9847, 5.9244, 5.8653, 5.8075, 5.7507, $ 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 , 5.6951, 5.4323, 5.1929, 4.9739, 4.7728, 4.5876, 4.4164, 4.2578, 4.1104, $ 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 , 3.9731, 3.8449, 3.7250, 3.6125, 3.5069, 3.4075, 3.3138, 3.2253, 3.1417, $ 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 , 3.0625, 2.9874, 2.9160, 2.8483, 2.7838, 2.7223, 2.6637, 2.6078, 2.5543, $ 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 , 2.5032, 2.4542, 2.4073, 2.3624, 2.3192, 2.2778, 2.2380, 2.1997, 2.1629, $ 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 , 2.1274, 2.0932, 2.0603, 2.0285, 1.9979, 1.9683, 1.9397, 1.9121, 1.8854, $ 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 , 1.8595, 1.8345, 1.8103, 1.7869, 1.7642, 1.7422, 1.7209, 1.7002, 1.6801, $ 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 , 1.6606, 1.6417, 1.6233, 1.6055, 1.5882, 1.5713, 1.5549, 1.5390, 1.5235, $ 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 , 1.5085, 1.4938, 1.4796, 1.4657, 1.4522, 1.4390, 1.4262, 1.4137, 1.4016, $ 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 , 1.3897, 1.3782, 1.3669, 1.3559, 1.3452, 1.3348, 1.3247, 1.3147, 1.3051, $ 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50 , 1.2957, 1.2865, 1.2775, 1.2687, 1.2602, 1.2519, 1.2438, 1.2358, 1.2281, $ 55.00 55.50 56.00 56.50 57.00 57.50 58.00 58.50 59.00 , 1.2206, 1.2132, 1.2060, 1.1990, 1.1922, 1.1855, 1.1790, 1.1727, 1.1665, $ 59.50 60.00 60.50 61.00 61.50 62.00 62.50 63.00 63.50 , 1.1604, 1.1546, 1.1488, 1.1432, 1.1378, 1.1325, 1.1273, 1.1222, 1.1173, $ 64.00 64.50 65.00 65.50 66.00 66.50 67.00 67.50 68.00 , 1.1125, 1.1078, 1.1033, 1.0989, 1.0946, 1.0904, 1.0863, 1.0823, 1.0785, $ 68.50 69.00 69.50 70.00 70.50 71.00 71.50 72.00 72.50 , 1.0747, 1.0711, 1.0676, 1.0641, 1.0608, 1.0576, 1.0545, 1.0514, 1.0485, $ 73.00 73.50 74.00 7 .50 75.00 75.50 76.00 76.50 77.00 , 1.0457, 1.0429, 1.0403, 1.0377, 1.0353, 1.0329, 1.0306, 1.0284, 1.0263, $ 77.50 78.00 78.50 79.00 79.50 80.00 80.50 81.00 81.50 , 1.0243, 1.0223, 1.0205, 1.0187, 1.0170, 1.0154, 1.0139, 1.0125, 1.0111, $ 82.00 82.50 83.00 83.50 84.00 84.50 85.00 85.50 86.00 , 1.0098, 1.0086, 1.0075, 1.0065, 1.0055, 1.0046, 1.0038, 1.0031, 1.0024, $ 86.50 87.00 87.50 88.00 88.50 89.00 89.50 90.00 , 1.0019, 1.0014, 1.0010, 1.0006, 1.0003, 1.0002, 1.0000, 1.0000, $ TABDRY(1) = 261*0.0D0, $ TABDRY(1) = $ .00 33.1457, $ .10 .20 .30 .40 .50 .60 .70 .80 .90 , 32.0301,30.9687,29.9582,28.9957,28.0787,27.2046,26.3712,25.5761,24.8173, $ 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 , 24.0929,23.4009,22.7396,22.1074,21.5028,20.9255,20.3703,19.8398,19.3314, $ 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 , 18.8441,18.3768,17.9283,17.4978,17.0843,16.6870,16.3051,15.9378,15.5844, $ 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 , 15.2443,14.9167,14.6011,14.2969,14.0036,13.7207,13.4476,13.1840,12.9294, $ 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 , 12.6834,12.4455,12.2156,11.9931,11.7778,11.5693,11.3675,11.1719,10.9823, $ 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 , 10.7985,10.6203,10.4473,10.2795,10.1165, 9.9523, 9.8046, 9.6552, 9.5099, $ 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 , 9.3687, 9.2313, 9.0976, 8.9675, 8.8408, 8.7175, 8.5973, 8.4802, 8.3661, $ 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 , 8.2548, 8.1463, 8.0405, 7.9373, 7.8365, 7.7382, 7.6421, 7.5484, 7.4567, $ 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 , 7.3672, 7.2798, 7.1943, 7.1107, 7.0289, 6.9490, 6.8707, 6.7942, 6.7193, $ 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00 , 6.6459, 6.5741, 6.5038, 6.4349, 6.3675, 6.3014, 6.2366, 6.1731, 6.1108, $ 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90 , 6.0529, 5.9930, 5.9342, 5.8735, 5.8170, 5.7615, 5.7071, 5.6537, 5.6012, $ 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 , 5.5497, 5.3055, 5.0773, 4.8761, 4.6863, 4.5106, 4.3477, 4.1963, 4.0551, $ 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 , 3.9232, 3.7998, 3.6840, 3.5753, 3.4729, 3.3764, 3.2853, 3.1992, 3.1176, $ 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 , 3.0403, 2.9668, 2.8971, 2.8307, 2.7674, 2.7071, 2.6496, 2.5946, 2.5420, $ 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 , 2.4917, 2.4434, 2.3972, 2.3529, 2.3103, 2.2694, 2.2301, 2.1923, 2.1559, $ 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 , 2.1208, 2.0870, 2.0544, 2.0230, 1.9926, 1.9633, 1.9350, 1.9076, 1.8811, $ 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 , 1.8555, 1.8307, 1.8067, 1.7834, 1.7609, 1.7391, 1.7179, 1.6973, 1.6774, $ 37.00 37.50 38.00 38.50 39.00 39.50 40.00 40.50 41.00 , 1.6580, 1.6392, 1.6210, 1.6033, 1.5860, 1.5693, 1.5530, 1.5372, 1.5218, $ 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 , 1.5068, 1.4922, 1.4780, 1.4642, 1.4507, 1.4376, 1.4249, 1.4125, 1.4004, $ 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 , 1.3886, 1.3771, 1.3659, 1.3549, 1.3443, 1.3339, 1.3238, 1.3139, 1.3043, $ 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50 , 1.2949, 1.2857, 1.2768, 1.2681, 1.2596, 1.2513, 1.2432, 1.2353, 1.2276, $ 55.00 55.50 56.00 56.50 57.00 57.50 58.00 58.50 59.00 , 1.2200, 1.2127, 1.2055, 1.1986, 1.1917, 1.1851, 1.1786, 1.1723, 1.1661, $ 59.50 60.00 60.50 61.00 61.50 62.00 62.50 63.00 63.50 , 1.1601, 1.1542, 1.1485, 1.1429, 1.1375, 1.1322, 1.1270, 1.1220, 1.1171, $ 64.00 64.50 65.00 65.50 66.00 66.50 67.00 67.50 68.00 , 1.1123, 1.1076, 1.1031, 1.0987, 1.0944, 1.0902, 1.0861, 1.0822, 1.0783, $ 68.50 69.00 69.50 70.00 70.50 71.00 71.50 72.00 72.50 , 1.0746, 1.0709, 1.0674, 1.0640, 1.0607, 1.0575, 1.0543, 1.0513, 1.0484, $ 73.00 73.50 74.00 74.50 75.00 75.50 76.00 76.50 77.00 , 1.0456, 1.0428, 1.0402, 1.0377, 1.0352, 1.0328, 1.0305, 1.0283, 1.0262, $ 77.50 78.00 78.50 79.00 79.50 80.00 80.50 81.00 81.50 , 1.0242, 1.0223, 1.0204, 1.0187, 1.0170, 1.0154, 1.0139, 1.0124, 1.0111, $ 82.00 82.50 83.00 83.50 84.00 84.50 85.00 85.50 86.00 , 1.0098, 1.0086, 1.0075, 1.0065, 1.0055, 1.0046, 1.0038, 1.0031, 1.0024, $ 86.50 87.00 87.50 88.00 88.50 89.00 89.50 90.00 , 1.0019, 1.0014, 1.0010, 1.0006, 1.0003, 1.0002, 1.0000, 1.0000, $ $ End TAB table of 8/29/77 $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$