function make_fast_histograms, scaler, id_first, ch_first, id_second, ch_second, $ ttsp, apthresh, fwin ; ; Create the fast neutron (Cat4) histograms from GRaND neutron event data. ; ; Notes: ; The science scaler CAT4 counts give the number of double pulse events ; processed in a collection interval (validated by comparing the pattern ; of scaler counts and total events across the BLP scintillators). ; Consequently, event tallies for each BLP scintillator are multiplied by ; the ratio of the scaler counts to the number of recorded events. ; ; Output(stored in result): ; ; factor - factor to convert the cat1 histogram to total ; counts, given by the ratio between the number of ; CAT1 events counted by the scaler to the number of ; CAT1 events stored in the event buffer. ; fast_spectrum - fast neutron spectrum ; fast_var - fast neutron spectrum variance (assuming the scaler counts ; and channelized event counts are Poisson random variants) ; total_count - number of events tallied ; first - first interaction event spectrum (early-late) ; second - second interaction event spectrum (early-late) ; ttsp - time to second pulse event spectrum ; first_early - first interaction event spectrum, early time window ; second_early - second interaction event spectrum, early time window ; first_late - first interaction event spectrum, late time window ; second_late - second interaction event spectrum, late time window ; ; Detector indices: [0: pz, 1:my, 2:py, 3:mz] ; ; Example: ; Plot the PZ fast spectrum with propagated error bars: ; plot, total(bfast.fast_spectrum[*,0],2), /ylog, min=1 ; oploterr,total(bfast.fast_spectrum[*,0],2), sqrt(total(bfast.fast_var[*,0],2)), 3 ; ; Plot the PZ time series sum of channels 2 to 40 of the fast spectrum ; plot, total(bfast.fast_spectrum[2:40,0],1) ; oploterr,total(bfast.fast_spectrum[2:40,0],1), sqrt(total(bfast.fast_var[2:40,0],1)), 3 ; ; Version 1.0, 18-May-2009 ; T. H. Prettyman ; Planetary Science Institute ; ; Instrument: ; Dawn GRaND (GRD) ; result={ factor : fltarr(4) , $ fast_spectrum : fltarr(64,4) , $ fast_var : fltarr(64,4) , $ total_count : lonarr(4) , $ first : lonarr(64,4) , $ second : lonarr(64,4) , $ ttsp : lonarr(256,4) , $ first_early : lonarr(64,4) , $ second_early : lonarr(64,4) , $ first_late : lonarr(64,4) , $ second_late : lonarr(64,4) } first_early=lonarr(64) second_early=lonarr(64) first_late=lonarr(64) second_late=lonarr(64) ttsp1=lonarr(256) for index_blp=0,3 do begin index_count=where(id_first eq index_blp and ttsp ne 0, fcount) index=where(ttsp ge 4 and id_first eq index_blp and id_second eq index_blp and ch_second gt apthresh[index_blp], count) if (count ne 0) then begin ttsp1=histogram(ttsp[index],min=0,max=255,nbins=256) index_early=where(ttsp ge fwin[0] and ttsp le fwin[1] $ and id_first eq index_blp and id_second eq index_blp and ch_second gt apthresh[index_blp], count) if (count ne 0) then begin first_early=histogram(ch_first[index_early],min=0,max=63,nbins=64) second_early=histogram(ch_second[index_early],min=0,max=63,nbins=64) endif index_late=where(ttsp ge fwin[2] and ttsp le fwin[3] $ and id_first eq index_blp and id_second eq index_blp and ch_second gt apthresh[index_blp], count) if (count ne 0) then begin first_late=histogram(ch_first[index_late],min=0,max=63,nbins=64) second_late=histogram(ch_second[index_late],min=0,max=63,nbins=64) endif endif result.total_count[index_blp]=fcount result.first[*,index_blp]=first_early-first_late result.first_early[*,index_blp]=first_early result.first_late[*,index_blp]=first_late result.second[*,index_blp]=second_early-second_late result.second_early[*,index_blp]=second_early result.second_late[*,index_blp]=second_late result.ttsp[*,index_blp]=ttsp1 c_scaler=float(scaler[7+index_blp]) c_event=float(result.total_count[index_blp]) result.factor[index_blp]=c_scaler/c_event result.fast_spectrum[*,index_blp]=float(result.first[*,index_blp])*result.factor[index_blp] result.fast_var[*,index_blp]=c_scaler/c_event*((1./c_scaler+1./c_event)*(first_early-first_late)^2+ $ first_early+first_late) endfor return, result end