Dawn Mission Mars Gravity Assist Preliminary Report for GRaND, v1.1

Prepared by Tom Prettyman 3-Mar-2009

Overview

- GRaND acquired neutron and gamma ray counting data during Mars Gravity Assist
 - Data acquired up to S/C entry into safe-mode (occurred after MCA at an altitude of 3000 km)
- GRaND got close enough to Mars to see neutrons and gamma rays:
 - Mars closest approach (MCA) was about 550 km
 - About 16 min were spent below 1000 km during which time the S/C was nadir-pointing to within about 10°
- The space background environment was quiet, ideal for science data acquisition
- GRaND was nominal during the encounter
- Preliminary results with comparisons to the Odyssey NS are presented

Operations and Data Analysis

- Instrument settings
 - 35s measurement intervals below 16000 km
 - Timestamp regression was not observed
- Data Volume
 - 295 science data records
- Level 1a data delivered to DSC
- Higher order data products under development
- Instrument was powered on successfully following MGA yesterday (2-Mar-09)
 - Continued data acquisition followed by power-off in DC024
 - Anneal operations deferred
 - Lessons learned (Should HV sequence be separate from Power ON and parameter set?)

Mars Closest Approach

18-Feb-2008, L_s=212° Mid Autumn in the Northern Hemisphere

Thermal

Seasons on Mars: Northern Hemisphere, T. H. Prettyman (LANL) and T. N. Titus (USGS)

Epithermal

Seasons on Mars: Northern Hemisphere, T. H. Prettyman (LANL) and T. N. Titus (USGS)

Trajectory (below 1000 km)

The seasonal cap in the northern hemisphere was thin. At high northern latitudes, the neutron spectrometer was primarily sensitive to the water-rich regolith.

Counting Data

Frame from QuickTime movie: GRaND Data MCA.mov

Neutron Counting Data

Nadir-pointing Li-glass CAT1, ⁶Li(n,t) peak

Fast neutrons CAT4, nadir+sides

The counting data were averaged using a 5-point sliding window

Analysis Method: Simple Approach

Procedure:

- Correct GRaND time series data for altitude and S/C orientation
 - Divide by the solid angle subtended by Mars at the S/C
 - Divide by the cosine of the S/C angle relative to nadir
- Compare the corrected GRaND counting rate for each measurement to the Odyssey counting rate averaged over GRaND's footprint

Simulated, footprint-averaged Odyssey data prepared prior to Dawn/MGA

Comparison Measured GRaND counting data to Odyssey

Detailed Analysis

Neutrons

- Compare modeled counting rates based on neutron leakage spectra to GRaND data
- Accounts for neutron decay,
 ballistic trajectories and relative
 motion of the S/C (ram effect)
- •Gamma rays
 - Compare O and Fe counting rates to mapped ODY/GRS data available in the PDS
- Analysis will include implications for science at Vesta and Ceres
- Results to be presented at EGU
- Manuscript on GRaND performance during cruise and MGA in preparation

Conclusions

- Mars Gravity Assist was a tremendous success from the standpoint of acquiring useful GRaND data
- GRaND measured gamma rays and neutrons originating from Mars
- GRaND neutron counting rates are strongly correlated with footprint-averaged Odyssey data
- The GRaND data will be useful for calibration and mission planning
- Results presented here should be regarded as preliminary - addition work on data reduction and analysis methods is needed in order to provide accurate comparisons to Odyssey